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Abstract 

Name: Anna Szöllősi 

Title of the thesis: Evaluation of the performance of the hydrological model WEAP in 

Norway 

Supervisors: Professor Tor Haakon Bakken 

NTNU Department of Civil and Environmental Engineering 

Baranya Sándor 

BME Department of Hydraulic and Water Resources Engineering 

Semester: 2024/25/2 

 

Water resource management plays a crucial role in ensuring sustainable development, 

especially in regions affected by climate change, such as Norway. The aim of this study was to 

assess the applicability of the WEAP (Water Evaluation and Planning) model under Norwegian 

climatic and hydrological conditions. As part of the research, the Princeton dataset built in 

WEAP was compared with meteorological data from the Norwegian SeNorge and NKSS 

sources. The results showed that the local SeNorge data more accurately reflect precipitation 

and temperature characteristics, and were therefore used as input for the model. 

The model was calibrated for the period 1987–2014, achieving moderate accuracy (NSE = 

0.553; PBIAS = –6.209%). A separate calibration for the summer period yielded improved 

performance (NSE = 0.719), whereas the model calibrated for the winter months performed less 

reliably (NSE = 0.496). The model was validated for the 1974–1986 period (NSE = 0.483), 

indicating a limited but usable predictive capability outside the calibration range. 

For future streamflow simulations three global climate models and multiple SSP (Shared 

Socioeconomic Pathways) scenarios were used to project changes for the 2060–2090 period. 

The simulations suggest a 29–39% decrease in average annual streamflow compared to the 

reference period. A particularly notable decline is projected for spring flood peaks, due to 

reduced snow accumulation and earlier snowmelt. The significant summer streamflow 

reduction implies increased drought risk and water supply uncertainty. 

The findings highlight the impacts of climate change on Norway’s water resources and 

emphasize the need for adaptive development of water management systems. The study 

underscores the importance of locally calibrated hydrological models and high-resolution 

regional meteorological data for reliable forecasting of future water management challenges.  
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1. Introduction 

1.1.  Overview 

Water has always been a significant part of human life. It is well understood that without water, 

there is no life. Water is present in every subtle cycle of our lives; there is no area where it does 

not appear. Over time, it has increasingly become a part of the economy, as it is used not only 

for drinking water supply and irrigation but also for electricity generation through hydropower 

plants. 

In recent decades, due to climate change and population growth, water has become an 

increasingly central issue. Demand has significantly increased, leading to new challenges in 

water management. It is crucial to address these challenges within the framework of sustainable 

economic development and to define future goals accordingly. In this context, the goal of 

sustainable water management for today's society should be the utilization of resources in a way 

that ensures their availability for future generations. We bear a significant responsibility in this 

regard, and several important objectives can be articulated: sustainable management and 

preservation of water resources, optimization of water consumption, maintenance of water 

quality, and development of water management infrastructure. In water management, it is 

essential to ensure that all sectors – including industry, agriculture, households, and natural 

ecosystems – have access to water while reducing unnecessary water use and preventing the 

depletion of water resources. To address future challenges, flexible water management systems 

are necessary to ensure the efficient and sustainable use of water resources. 

In Norway, where more than 70% of the country's major rivers are used for electricity 

generation through hydropower plants, water plays a prominent role. It is important to 

understand the timing and extent of extreme water flows. Dry periods in southern Norway 

mainly occur during the summer, due to high temperatures and low precipitation. In northern 

regions, dry periods are more common in winter, when precipitation is stored as snow until the 

snow melts in spring. Flood periods mainly occur during the rainy autumn months and during 

the spring snowmelt. 

Today, when addressing challenges, we cannot overlook climate change, which is making 

extreme events - floods, droughts - more and more frequent. These issues are of great 

significance for the protection of life and property, as well as for the preservation of ecosystems. 

In Norway, the average annual temperature is projected to increase by 1.6 to 4.6 °C by the end 

of the century, while average annual precipitation is expected to increase by 8–18% (Hanssen-
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Bauer et al., 2017) As a result of climate change, floods caused by rainfall are expected to 

become more frequent, while floods resulting from snowmelt may become less common. Snow-

covered months are likely to be significantly shorter, and due to increased temperatures, 

snowmelt is expected to occur earlier (Hanssen-Bauer et al., 2017). In areas where autumn and 

winter floods are already dominant, significant increases in flood peaks are anticipated. In some 

regions where snowmelt-induced floods have been typical, floods caused by autumn and winter 

rainfall may play an increasingly significant role in the future (Lawrence & Hisdal, 2011). 

Estimating and forecasting these high-water flows are crucial to aid in flood management.  

The complexity of water management necessitates the use of various technologies, as different 

models can help to manage water efficiently and sustainably. For example, hydrological models 

that simulate the movement and distribution of water under various environmental conditions 

are fundamental tools in water management. These models can be used to analyze and identify 

the key processes of water balance in a river basin and thus determine the most appropriate 

water management strategy to ensure sustainability. 

Hydrological models can also aid in the integrated management of water management systems. 

In Norway, the most widely used hydrological model is the HBV model (Hydrologiska Byråns 

Vattenbalansavdelning), developed by the Swedish Meteorological and Hydrological Institute 

(SMHI) in 1972. A significant advantage of this model is its applicability in cold climates, 

where snow and ice melt play a crucial role in the water balance of catchment areas. However, 

a drawback is that the model does not account for human interventions, such as hydropower 

plants or water withdrawals, and therefore may not always provide an accurate representation 

of reality (Bergström, 1976, 1995). In contrast, the WEAP model (Water Evaluation and 

Planning) offers the possibility for more complex management of water supply and 

consumption. The WEAP software was developed by the Stockholm Environment Institute 

(SEI) in 1988. The software allows the modelling of water management depending on the 

available data quality and quantity. Additionally, it can model various future water management 

scenarios to examine how certain climate scenarios affect water distribution and quantity 

(Sieber, 2006). The use of WEAP is common in Africa, China, America, Europe, and around 

the world. Applications of WEAP model can be seen in research of Bañares et al. (2024), Li et 

al. (2015), Mahamadou Mounir et al. (2011), Sardar Shahraki et al. (2016), Winter et al. (2017). 

It is applied for estimating water management strategies, calculating future water demands, 

assessing the impacts of climate change, determining irrigation water requirements, and much 

more.  
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Although the WEAP model has been applied in Norwegian contexts (Olabiwonnu, 2020; 

Olabiwonnu et al., 2022; Pramudith et al., 2022), no one has yet examined its accuracy. In 

Scandinavian countries, the HBV model is much more prevalent and handles climate data more 

accurately; however, due to its shortcomings (not accounting for human interventions), I 

considered it worthwhile to examine the more complex WEAP model. In this thesis, the 

following was examined: how the WEAP model handles the Norwegian climate and snowmelt, 

whether the model can be calibrated to suit cold-weather conditions. 

The aim of my thesis is to test the WEAP model under Norway's specific climatic and 

hydrological conditions, with particular attention to snow and ice accumulation, variations in 

water flow, and the applicability of modeling in managing floods and low water flows. In my 

research, I will examine how the WEAP model can be applied in Norwegian water management 

practices and how various hydrological and climatic factors influence the model's performance. 

1.2.  Research Questions 

1. Is the WEAP model applicable in Norway? 

a. How accurately does the model represent snow accumulation and snowmelt 

processes? 

b. How reliable is the built-in climate data provided by the model? 

c. Can the model be calibrated appropriately to be transferable to other catchments 

with similar characteristics? 

2. What is the impact of climate change on characteristic streamflow in Norway, and is it 

possible to model this using the WEAP software? 

1.3.  Research Methodology 

1. Identify a suitable catchment for the performance assessment 

2. Compile all relevant data for the purpose of testing the performance 

3. Analyze/quality check the data to be used, i.e. compare the built-in datasets in WEAP 

with the data available from national data sources in Norway 

4. Calibrate/validate WEAP for the selected test catchment by use of suitable statistical 

criteria 

5. Identify and describe quality of the calibration/validation 

6. Examine the impact of climate change on the selected test catchment 
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2. Data and method 

2.1.  Generalities and presentation of the WEAP model 

The WEAP (Water Evaluation and Planning System) model was developed by the Stockholm 

Environment Institute (SEI) in 1988. WEAP is an integrated hydrological and planning model 

that combines watershed-level hydrological processes with water management systems. It is 

capable of directly handling climate data and simultaneously modeling both water demand and 

supply. With GIS support, built-in ecological and economic analysis modules, and compatibility 

with other models (e.g., MODFLOW, QUAL2K), it enables complex simulations (Sieber, 

2006). 

WEAP operates on the principle of water balance calculations and is widely applicable to a 

range of systems – whether for urban or agricultural water management, smaller catchments, or 

complex river systems. It can address a wide range of problems, such as sectoral water demand 

analysis, water rights and allocation priorities, groundwater and river simulations, reservoir 

operations, hydropower management, pollution monitoring, water needs of ecosystems, etc. 

The application of WEAP begins with defining the scope of the study, which includes 

specifying the time period, spatial boundaries, and system components. The second step is to 

establish the current situation ("Current Accounts"), entering current water demand, pollution, 

water resources and infrastructure data. Afterwards, future scenarios are developed based on 

different policies, costs and impact factors, and then these scenarios are compiled by comparing 

different assumptions and regulatory options. The final step involves evaluating the adequacy 

of water supply, cost-benefit analysis, compliance with environmental goals, and uncertainty 

assessment (Sieber, 2006). 

A key foundation of the model is the development of user-defined scenarios. After recording 

the current situation ("Current Accounts"), a "Reference Scenario" or "business-as-usual" can 

be developed based on different economic, demographic, hydrological and technological 

trends. From this point, additional scenarios can be created based on different policies or 

development directions, which allow exploration of various future assumptions. These 

scenarios are based on different "What if? " questions. What happens if the rate of population 

growth or economic development changes? What happens if new sources of pollution emerge? 

What is the impact of more efficient irrigation techniques? How does climate change affect the 

hydrology of the system? The different scenarios can be displayed side by side and compared 

to see how each change affects the water management system (Sieber & Purkey, 2015). 
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In WEAP, there are five different methods available for modeling processes - such as 

evaporation, runoff, infiltration, and irrigation demand - in watershed areas.  These methods are 

(1) the Rainfall Runoff and (2) Irrigation Demands Only versions of the Simplified Coefficient 

Approach, (3) the Soil Moisture Method, (4) the MABIA Method, and (5) the Plant Growth 

Model or PGM. The choice of method is influenced by the complexity of the research and the 

data available. 

In this thesis, the Soil Moisture Method was chosen, which offers an appropriate level of 

complexity, is widely used, and has the important feature of allowing snow accumulation 

modeling. The method interprets the catchment area as two soil layers. The different variables 

and the principle of the method are presented in Figure 1. Precipitation and melted snow reaches 

the ground in the form of water, part of which runs off as surface runoff and part of which 

infiltrates into the topsoil. In this layer, some of the water continues to flow to the lower soil 

layer, while some of it accumulates as groundwater. Finally, the remaining water from the lower 

soil layer also collects as groundwater. 

 

Figure 1 The two-bucket model (Sieber & Purkey, 2015) 
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2.2.  Søgne basin 

For building the model, the Søgne River (also known as Songdalselva, Søgneelva, or Songa) 

was selected. It is approximately 55 km long and located in southern Norway. A key 

characteristic of this river is that it is unregulated, meaning it maintains its natural flow regime 

and conditions, which makes it particularly suitable for hydrological modeling. The availability 

of climate data for rivers in southern Norway within the WEAP software also played an 

important role in selecting this particular river for the study. In addition, the Norwegian Water 

Resources and Energy Directorate (NVE) defined a Hydrological Reference Dataset (HRD), 

which lists rivers that are suitable for climate change modeling based on both regulation status 

and availability of measured data (Bækø J, Pedersen I, 2024). The Søgne River is included in 

this list and is therefore considered appropriate for climate change studies. 

 

Figure 2 Catchment area of the river Søgne 

Figure 2 shows the location of the river within the territory of Norway. The elevation of the 

catchment area is between 0 and 500 meters. The catchment area is 209 km², and the land use 

distribution within the catchment is presented in Table 1. 
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Table 1 Distribution of land use 

Land use Amount (%) 

Forest 80,4 

Agriculture 5,3 

Wetland 5,8 

Surface water 4,2 

Other 4,3 

  

2.3.  Available data, division of time period 

During the research, multiple data sources were used, the types and origins of which are 

summarized in Table 2. The climate datasets integrated into the WEAP modeling software are 

from a database compiled by Princeton University, which includes variables for precipitation, 

temperature, relative humidity, wind speed, cloud cover, freezing and melting points, among 

others. 

In order to achieve the highest possible accuracy, I aimed to conduct the analyses primarily at 

a daily resolution. This required the use of high-resolution meteorological data from Norwegian 

sources. 

The SeNorge platform provided reliable, daily resolved precipitation, temperature and snow 

depth data, and the Norsk Klimaservicesenter (NKSS) website provided high-quality daily 

precipitation data. The observed streamflow data required for model calibration were obtained 

from the NVE Sildre (Norges vassdrags- og energidirektorat) database, which contains 

measurements from a local gauging station located on the Søgne River. 

Table 2 Source and duration of data 

Data type Source Period (mm/dd/yyyy) Comment 

Precipitation 
Princeton 1/1/1948 12/31/2014   
SeNorge 1/1/1957 Today   

NKSS 1/1/1948 6/30/2024   

Temperature 
Princeton 1/1/1948 12/31/2014   
SeNorge 1/1/1957 Today   

Snow depth SeNorge 1/1/1957 Today   
Streamflow NVE-Sildre 12/14/1973 Today 1992 missing 
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Table 2 not only presents the types and sources of the data used but also indicates the time 

periods for which each dataset was available. Figure 3 provides an illustrative graphical 

representation of these time intervals. The figure shows that the time spans covered by the 

various data sources differ; however, the period from 1974 to 2014 is the only one during which 

all the necessary data were simultaneously available. Therefore, this time range provided the 

most complete and reliable basis for comparative and calibration analyses. 

 

Figure 3 Available time intervals of different datasets 

To assess the reliability and predictive capability of the model, I divided the available dataset 

for the period between 1974 and 2014 into two parts: the period from 1974 to 1987 was used 

for validation, while the period from 1987 to 2014 was used for calibration. This division 

follows internationally accepted practice, which recommends allocating approximately one-

third of the full dataset for model validation and the remaining two-thirds for calibration 

(Moriasi et al., 2015). 

This approach allows an objective assessment of the model's performance over a period of time 

unaffected by calibration. It also reduces the risk of "overfitting", i.e. the possibility that the 

model may become overly tailored to the calibration data and perform poorly during other 

periods. The methodological principle is supported by several studies and recommendations, 

emphasizing that the spatial and temporal separation of calibration and validation is a 

fundamental requirement for the correct application of hydrological models (Refsgaard & 

Knudsen, 1996). 
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2.4.  Examined statistical variables 

Like all hydrological models, the WEAP model needs to be calibrated. The model's adequacy 

is assessed by comparing simulated values with observed data. Several statistical variables can 

be used for this comparison; in my research, I applied the NSE (Nash-Sutcliffe Efficiency) and 

PBIAS (Percent Bias) parameters. 

The NSE evaluates how well the simulated values match the observed ones. It indicates how 

well the graph of observed and simulated data fit the 1:1 line. The NSE is calculated with 

equation 1: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

]   (1)  

where Yi
obs is the i-th measured value, Yi

sim is the i-th simulated value, Ymean is the average of 

the observed data, and n is the total number of observations. 

Its value ranges between -∞ and 1, where 1 is the optimal value. A value between 0 and 1 is 

considered acceptable, while a value below 0 means that estimating by the mean would give a 

more accurate value (Nash & Sutcliffe, 1970). The categories shown in Table 3 are the 

guidelines for the evaluation (Moriasi et al., 2015). 

The PBIAS (percent bias) expresses the extent to which the model overestimates or 

underestimates a given variable compared to observations (Gupta et al., 1999). The optimal 

value of PBIAS is 0; positive values indicate underestimation by the model, while negative 

values reflect overestimation. The interpretation is also guided by the categories shown in Table 

3 (Moriasi et al., 2015). The PBIAS value is calculated with equation 2: 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)∙100𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

]   (2) 

where Yi
obs is the i-th measured value, Yi

sim is the i-th simulated value, and n is the total number 

of observations. 
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Table 3 Categories of model evaluation 

Performance 

Rating 
NSE PBIAS (%) 

Very good 0,80 < NSE PBIAS < ±5 

Good 0,70 ≤ NSE ≤ 0,80 ±5 ≤ PBIAS < ±10 

Satisfactory 0,50 < NSE < 0,70 ±10 ≤ PBIAS < ±15 

Unsatisfactory NSE ≤ 0,50 PBIAS ≥ ±15 

 

Therefore, the model is considered satisfactory if the conditions NSE > 0.50 and PBIAS ≥ 

±25 are met (Moriasi et al., 2015). 

2.5. Workflow 

 

Figure 4 Workflow method of the WEAP model calibration, validation, and future climate 

scenario assessment 
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Data sources and initial analyses 

As the first step of the modeling process, the climate data integrated into the WEAP software 

was examined, which originates from Princeton University's database. While these data sets are 

widely applicable on a global scale, their reliability for use in Norway had not been previously 

validated. The available dataset covers the period from 1973 to 2014 and includes variables 

such as precipitation, temperature, humidity, wind speed, and snow depth. 

 To assess the reliability of these data, I compared the Princeton dataset with: 

• Observed streamflow values from the Sildre database, 

• Precipitation, temperature, and snow depth measurements from local stations on the 

SeNorge platform, 

• Precipitation data provided by the Norsk Klima Service Senter. 

Initial model evaluation and data correction 

The initial simulation results, based on Princeton input data, were compared with the observed 

streamflow. To evaluate the model's performance, two statistical indicators were applied: the 

Nash–Sutcliffe Efficiency (NSE), and the Percent Bias (PBIAS). These indicators were 

calculated both for the entire modeling period and seasonally, with separate assessments for the 

summer and winter periods. 

The initial results indicated that the calculated statistical indicators deviated significantly from 

the generally accepted reference values. As a result, the Princeton dataset was replaced with 

precipitation and temperature data from the SeNorge database, which was deemed more 

reliable. Simulations and performance evaluations were then repeated using the updated inputs. 

Although the recalculated indicators showed notable improvement further model calibration 

was needed. 

Calibration and validation of the model 

Model calibration was conducted in multiple stages: first over the full modeling period, and 

then separately for the summer and winter seasons. The available data covered the period 1974-

2014. The calibration was performed for two thirds of the total period (1987-2014), while the 

remaining one third (1974-1987) was used for model validation. 
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The calibrated model produced satisfactory results. During the validation phase the 

performance of the model was examined to ensure the applicability and stability of the model 

to unknown periods. 

Future climate scenario assessment 

As the final step in the analysis, future climate scenarios were evaluated based on outputs from 

various global climate models (GCMs). Their potential impacts on streamflow data were 

assessed, with particular attention given to low-flow frequency and magnitude, as well as 

changes in annual average discharge. Based on these results, conclusions were drawn regarding 

the expected evolution of future hydrological conditions. 

2.6.  Future climate scenarios 

Considering climate change has become a fundamental requirement in both water management 

and ecosystem protection. Forecasting future streamflow is essential for planning hydropower 

utilization, modeling ecological processes influenced by low flows (such as fish population 

survival), and conducting flood risk forecasting and risk analysis. 

Shared Socioeconomic Pathways (SSPs) 

In assessing future climate scenarios, understanding and applying the Shared Socioeconomic 

Pathways (SSPs) is essential. The SSPs describe possible future developments in society and 

economy, which serve as the foundation for simulating future greenhouse gas emissions and 

climate impacts in climate models. Developed under the CMIP6 project, these scenarios are 

widely used for climate impact assessments, as well as for evaluating adaptation and mitigation 

strategies (O’Neill et al., 2016). 

The SSPs combine different societal and economic scenarios with various climate policy 

pathways, quantifying changes in resource use, energy consumption, technological 

development, population growth, and environmental awareness. 

In this study three SSP scenarios were applied, representing different levels of future climate 

change: 

• SSP1-2.6 – A sustainable development pathway characterized by low population 

growth, environmentally friendly technologies, and strong international cooperation. 

This is one of the most optimistic scenarios, aiming to limit global warming below 2°C. 
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• SSP2-4.5 – A middle path scenario, assuming continuation of current trends. It reflects 

moderate social and economic change and moderate emission reductions, resulting in a 

mid-range level of climate change. 

• SSP5-8.5 – A pessimistic scenario based on rapid economic growth and heavy reliance 

on fossil fuels. This leads to the highest levels of greenhouse gas emissions and 

potentially substantial global warming (up to 4–5°C). 

Applying these scenarios enables the evaluation of potential future climatic conditions under 

varying socioeconomic and emission trajectories, with particular focus on their effects on 

streamflow. 

Applied climate models 

In this thesis, the objective was to model future streamflow under different climate scenarios 

using a hydrological model that was calibrated and validated for a Norwegian catchment. For 

this purpose, three global climate models available within the WEAP system were selected: 

NorESM2-LM, MPI-ESM1-2-HR, and HadGEM3-GC31-MM. 

The NorESM2-LM (Norwegian Earth System Model, version 2, Low Resolution) is a climate 

model developed by the Bjerknes Centre for Climate Research and the Norwegian 

Meteorological Institute. It has been specifically optimized for high-latitude, Arctic, and 

Scandinavian conditions. A comprehensive description of the model is provided by Seland et 

al. (2020), highlighting its capabilities in simulating temperature, precipitation, and sea ice 

patterns. Due to its region-specific development and strong performance in Scandinavia, this 

model was considered a natural choice for studying a Norwegian river. 

The MPI-ESM1-2-HR is a high-resolution global climate model developed by the Max Planck 

Institute for Meteorology. It has been applied and validated within the CMIP6 (Coupled Model 

Intercomparison Project Phase 6) and HighResMIP (High Resolution Model Intercomparison 

Project) frameworks. Müller et al. (2018) and Gutjahr et al. (2019) emphasize its excellent 

performance in simulating temperature and precipitation, particularly across Europe and the 

Scandinavian region. Its high spatial resolution makes it well-suited for regional impact 

assessments. 

The HadGEM3-GC31-MM is part of the third generation of global climate models developed 

by the UK Met Office Hadley Centre. As described by Andrews et al. (2020), the model was 

developed under the CMIP6 project and is widely used in European climate scenario analyses, 
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including Scandinavia. Thanks to its medium spatial resolution and advanced atmospheric 

parametrization, it is well-suited for supporting regional hydrological studies. 

Methodology for Climate Scenario Analysis 

To analyze future streamflow changes, daily data were used from the three global climate 

models (NorESM2-LM, MPI-ESM1-2-HR, HadGEM3-GC31-MM) integrated into the WEAP 

system. These datasets were available from 2015 to 2100 and were generated according to the 

different SSP emission scenarios described above. 

For evaluation, the 30-year future period of 2060–2090 was selected. This timeframe aligns 

with the IPCC’s recommendations for climate trend analysis, as longer periods help smooth out 

natural climate variability, reducing the influence of short-term fluctuations (IPCC, 2021). As 

a result, the observed changes more accurately reflect long-term climate trends rather than year-

to-year variability. 

The simulated future streamflow was compared with the past reference period of 1980–2010 

simulated by the model. It is important to note that historical reference data were not based on 

observed measurements, but on the model’s historical simulations. This approach avoids 

inconsistencies that could arise from combining observed and modeled datasets, which may 

have structural differences. By comparing both periods within the model’s own framework, the 

analysis maintains internal consistency, which is crucial for reliable estimation of relative 

changes. 
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3. Results and evaluation 

3.1.  Data sources and initial analyses 

The WEAP software provides access to a built-in climate database created by the Terrestrial 

Hydrology Group at Princeton University. The database contains climate data for the period 

between 1948 and 2014. Although this data source is widely used in various hydrological and 

climate modelling studies, it has not been proven that the data can be used with sufficient 

accuracy in a Norwegian context. Accordingly, validation of the database was considered 

essential as an initial step in this research. 

The data validation was carried out by comparing data from the Princeton University database 

with data from local Norwegian monitoring stations. As a reference, the SeNorge database was 

used, which contains precipitation, temperature and snow depth data. The Norsk Klima Service 

Senter database was also used, which provides local precipitation data. The comparisons have 

been carried out using Microsoft Excel, applying different visualization techniques such as 

graphs, pivot tables and histograms. 

3.1.1. Precipitation data comparison 

 

Figure 5 SeNorge and Princeton precipitation data in 2005 
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Figure 6 SeNorge and NKSS precipitation data in 2005 

Figures 5 and 6 illustrate the precipitation data for a randomly selected year. The SeNorge and 

Norsk Klima Service Senter measurements show a close correlation: the precipitation 

maximums occur at the same time, and although there are small differences in intensity, the 

overall trend of the data is the same. 

In contrast, precipitation data from the Princeton database show significant deviations from 

SeNorge values. The timing and intensity of precipitation peaks do not align clearly, raising 

concerns about the applicability of the data for hydrological modeling in Norway. 

 

Figure 7 Princeton precipitation data distribution 2005-2009 
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Figure 8 SeNorge precipitation data distribution 2005-2009 

 

Figure 9 NKSS precipitation data distribution 2005-2009 
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precipitation values are less frequent in the Princeton database, while the local station data tend 

to follow the more extreme weather patterns of the northern areas. 

Table 4 Annual precipitation totals 

Year Sum / Princeton 
(mm/year) 

Sum / SeNorge 
(mm/year) 

Sum / NKSS 
(mm/year) 

1975 1388.93 1781.60 1565.00 
1980 1198.59 1656.50 1284.30 
1985 1336.66 1769.10 1474.80 
1990 1969.22 2493.00 2250.90 
1995 1393.67 1679.00 1456.20 
2000 1730.66 2830.10 2589.10 
2005 1392.37 1653.10 1439.80 
2010 1158.81 1377.10 1235.40 
2014 1767.85 2527.50 2495.30 

 

In Table 4 the summarized values represent sums for every year, and in the table every fifth 

year is presented. A tabular comparison of annual precipitation totals confirms that the SeNorge 

and Norsk Klima Service Senter data show a strong correlation, while the Princeton database 

systematically records lower annual precipitation totals. This suggests that the Princeton 

database may underestimate precipitation levels in Norway, potentially distorting hydrological 

modeling results.  

3.1.2. Temperature data comparison 

In addition to precipitation data, temperature data were also compared. In this case, data were 

only available from the Princeton and SeNorge databases.  

 

Figure 10 SeNorge and Princeton temperature data in 2007 
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Figure 10 illustrates the annual temperature variation for a selected year. The trend in the 

Princeton database follows the seasonal variations well, but there are minor differences, 

especially in extreme weather conditions. The SeNorge data, on the other hand, seems to be 

more accurate, as they show larger fluctuations, probably due to the denser network of local 

meteorological stations and more detailed measurement methods. 

 

Figure 11 Princeton temperature data distribution 2005-2009 

 

Figure 12 SeNorge temperature data distribution 2005-2009 
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Princeton data are less extreme. This may suggest that the Princeton model returns smoother 

values, while SeNorge tracks local variations better. 

Table 5 10-year precipitation averages 

Year Average / 
SeNorge (°C) 

Average / 
Princeton (°C) 

Average / Dif-
ference (°C) 

1973-1983 6.751 6.073 0.677 
1984-1993 7.082 6.409 0.672 
1994-2003 7.541 6.729 0.812 
2004-2014 7.801 7.227 0.574 

 

Based on the 10-year average temperatures (Table 5), the Princeton data showed lower averages 

than the SeNorge database values in all years. This confirms the assumption that the Princeton 

model is susceptible to simulating climatic extremes, which can lead to inaccuracies in 

hydrological modelling at a local scale. 

3.1.3. Snow depth comparison 

Snow depth data were available from both the Princeton and SeNorge databases.  

 

Figure 13 SeNorge and Princeton snow depth data in 2000 
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3.1.4. Conclusion of the evaluation of climate data 

Analysis of the data shows that the Princeton database does not provide sufficiently accurate 

climate data for Norway. Based on comparisons of precipitation and temperature, the SeNorge 

database was found to be more reliable as it better reflects local measurements. 

Therefore, in the modelling analyses, I replaced the Princeton database precipitation and 

temperature data with the SeNorge data, as they provide higher accuracy and local relevance 

for the analysis of Norwegian rivers. 

3.2.  Calibration of the model for the whole period 

3.2.1. Calibration of Kc 

The first step of the calibration was to adjust the Kc (crop coefficient) parameter. Accurate 

determination of crop water use is key in hydrological modelling, especially when estimating 

evapotranspiration. The crop coefficient (Kc) is a dimensionless multiplier that indicates how 

much water a specific crop or vegetation type transpires relative to the reference 

evapotranspiration (ET₀) (Pereira, 1998). The actual evapotranspiration (ETc) is calculated 

using equation 3: 

𝐸𝑇𝑐 = 𝐾𝑐 ∙ 𝐸𝑇0    (3) 

The value of Kc changes according to the different growth stages of the vegetation, so the model 

needs to be capable of capturing these temporal variations. In the WEAP model, the purpose of 

calibrating Kc is to ensure that the simulated water use of vegetation reflects reality as closely 

as possible. This is important because it directly affects soil moisture, infiltration processes, 

surface runoff, and ultimately the accuracy of streamflow simulations (Figure 1). Well-chosen 

and properly calibrated Kc values are therefore essential for ensuring the reliability of the 

model's results. 

The default value of Kc is 1, which means that the reference evapotranspiration is equal to the 

actual evapotranspiration. The calibration of the Kc value in this research was performed using 

the automatic calibration algorithm PEST (Parameter ESTimation) built into the WEAP model. 

PEST is an iterative optimization tool capable of fine-tuning the model input parameters in a 

way that minimizes the difference between simulated and measured data (Doherty, 2015). 

Figure 14 shows the layout of PEST in the WEAP software. Following this initial use, PEST 

was not applied further, as it mainly supported the visual understanding of parameter sensitivity, 

but did not define specific optimal parameter values. 
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Figure 14 PEST program in the WEAP software 

Table 6 Calibration of Kc for the whole period 

Kc 
Kc (-) PBIAS (%) NSE (-) 
2 -15.283 0.398 
2,3 -10.535 0.396 
2,4 -9.047 0.395 
2,5 -7.604 0.393 
2,6 -6.203 0.392 
2.7 -4.844 0.390 
2.8 -3.525 0.388 
2.9 -2.243 0.386 
3 -0.999 0.384 
3.1 0.210 0.381 
3.2 1.385 0.379 
4 9.711 0.359 

 

Table 6 presents the calibration results of the Kc value, based on the performance indicators 

PBIAS and NSE. According to the table, the PBIAS value is closest to zero at Kc = 3.1, while 

the NSE also remains within the range generally considered acceptable. The Kc value of 3.1 

was kept constant throughout the calibration of all other parameters. This decision was made to 

maintain a consistent methodological approach across the entire calibration and evaluation 

process. 



27 

 

3.2.2. Calibration of other parameters 

After calibrating the Kc value, further calibration calculations were deemed necessary based on 

the PBIAS and NSE indicators. In these cases, Kc = 3.1 was used, as it provided the most 

balanced results according to previous analyses. The calibration focused on the following 

hydrological parameters: Root Zone Conductivity (RZC), Soil Water Capacity (SWC), Deep 

Conductivity (DC), Deep Water Capacity (DWC), Runoff Resistance Factor (RRF), and 

Preferred Flow Direction (PFD). These parameters were selected because they have a direct 

impact on the soil moisture distribution, the dynamics of deep infiltration and the water balance 

processes simulated by the model. Proper calibration of these variables is essential for 

improving the model’s overall performance. 

Table 7 summarizes the default values of the parameters examined during the calibration 

process. As a starting point, the calibration typically considered half and double the default 

values, followed by a more detailed analysis using finer intervals. In each case, the most optimal 

value—based on performance indicators—was highlighted in green. 

Table 7 Default value of parameters 

Parameter Default 

Root Zone Conductivity (RZC) 20 mm/day 

Soil Water Capacity (SWC) 1000 mm 

Deep Conductivity (DC) 20 mm/day 

Deep Water Capacity (DWC) 1000 mm 

Runoff Resistance Factor (RRF) 2 

Preferred Flow Direction (PFD) 0,15 

 

Calibration of Root Zone Conductivity 

The value of Root Zone Conductivity (RZC) refers to the conductivity of the root zone (top 

"bucket") under conditions of full saturation, i.e., when relative storage Z1 = 1.0. At this 

saturation level, water flow divides in two directions: lateral movement within the upper soil 

layers (interflow), and downward movement toward the deeper soil layers. Different soil types 

result in varying RZC values. According to Table 8, the statistical performance indicators 

showed the most optimal results at RZC = 15 mm/day. 
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Table 8 Calibration of Root Zone Conductivity (RZC) for the whole period 

RZC+Kc=3,1 
RZC (mm/day) PBIAS (%) NSE (-) 
10 10.752 0.398 
15 4.719 0.393 
19 1.022 0.384 
20 (default) 0.210 0.381 
21 -0.565 0.379 
25 -3.345 0.369 
40 -10.791 0.336 

 

Calibration of Soil Water Capacity 

Soil Water Capacity (SWC) represents the water-holding capacity of the upper soil layer (top 

"bucket") and is expressed in millimeters (mm). The value of SWC typically ranges between 0 

and 1000 mm. According to Table 9, the statistical indicators showed the most optimal 

performance at SWC = 500 mm. 

Table 9 Calibration of Soil Water Capacity (SWC) for the whole period 

SWC+Kc=3,1 
SWC (mm) PBIAS (%) NSE (-) 
200 -10.144 0.555 
500 -5.098 0.472 
900 -0.739 0.396 
950 -0.258 0.388 
975 -0.022 0.385 
980 0.024 0.384 
1000 (default) 0.210 0.381 
2000 6.922 0.299 

 

Calibration of Deep Conductivity 

Deep Conductivity (DC) represents the conductivity of the deeper soil layer (bottom “bucket”) 

at a relative storage of Z2 = 1.0, meaning full saturation. This parameter controls the amount of 

baseflow generated in the model. In WEAP, the DC value is defined as a single, consistent 

parameter across the entire catchment area, regardless of soil classification or spatial 

heterogeneity. Increasing the DC value results in higher baseflow. It is important to note that if 

backflow occurs towards a groundwater node in the study area, the DC parameter is not taken 

into account in the model. 
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Table 10 presents the PBIAS and NSE statistical indicators for various DC values, with the 

fixed value Kc = 3.1. According to the analysis, a DC value of 1000 mm/day was found to be 

optimal and still hydrologically realistic. Higher values, such as DC = 5000 mm/day, do not 

reflect realistic soil physical properties; although they may lead to slight improvements in the 

NSE indicator, they do not yield a significant enhancement in overall model performance, as 

illustrated in Figure 15. 

Table 10 Calibration of Deep Conductivity (DC) for the whole period 

DC+Kc=3,1 
DC (mm/day) PBIAS (%) NSE (-) 
10 0.268 0.386 
20 (default) 0.210 0.381 
40 0.189 0.380 
100 0.178 0.386 
200 0.179 0.394 
500 0.195 0.407 
1000 0.202 0.416 
2000 0.206 0.425 
5000 0.210 0.436 

 

 

Figure 15 Variation of PBIAS and NSE according to DC 
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Calibration of Deep Water Capacity 

Deep Water Capacity (DWC) represents the actual water holding capacity of the deeper soil 

layers (bottom “bucket”), expressed in millimeters (mm). This value is given as a single 

parameter for the catchment area and does not vary according to soil type. In cases where 

backflow occurs toward a groundwater node within the study area, the DWC parameter can be 

disregarded. Based on Table 11, DWC = 10 mm produced the most optimal results according 

to the statistical indicators. 

Table 11 Calibration of Deep Water Capacity (DWC) for the whole period 

DWC+Kc=3,1 
DWC (mm) PBIAS (%) NSE (-) 
10 0.209 0.468 
50 0.204 0.442 
100 0.199 0.425 
250 0.183 0.400 
500 0.179 0.384 
750 0.192 0.380 
1000 (default) 0.210 0.381 
2000 0.319 0.392 

 

Calibration of the Runoff Resistance Factor 

Runoff Resistance Factor (RRF) is defined as the control surface runoff response, influenced 

by various environmental factors such as catchment area index and land slope. The RRF 

typically ranges between 0 and 1000, with a default value of 2. 

Since RRF can vary depending on land use categories, its proper calibration is essential for 

accurate simulation results. Sensitivity analyses were conducted during calibration to determine 

the statistical performance indicators corresponding to different RRF values, as summarized in 

Table 12. Although the value of RRF = 1.5 appeared theoretically optimal, the simulations 

indicated that RRF = 2 (the default value) yielded the most favorable results in terms of both 

PBIAS and NSE. It is also important to note that the model showed high sensitivity to changes 

in the RRF value. 
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Table 12 Calibration of Runoff Resistance Factor (RRF) for the whole period 

RRF+Kc=3,1 
RRF (-) PBIAS (%) NSE (-) 
1 -7.093 0.439 
1,5 -2.432 0.433 
2 (default) 0.210 0.381 
4 4.040 0.200 

 

Calibration of Preferred Flow Direction 

The Preferred Flow Direction (PFD) parameter controls the direction of water movement in the 

root zone layer (top "bucket"). It can range from 0 to 1, where a value of 1.0 indicates that 100% 

of the water moves laterally (interflow), while a value of 0 implies that 100% of the water 

moves vertically downward into the lower soil layer (bottom "bucket") or directly into the 

groundwater. The PFD value may vary depending on the soil class. The default value in the 

model is 0.15. 

The results of calibration simulations performed for different PFD values are summarized in 

Table 13. The performance indicators were most favorable at PFD = 0.9, suggesting that lateral 

water movement is dominant in the study area. 

Table 13 Calibration of Preferred Flow Direction (PFD) for the whole period 

PFD+Kc=3,1 
PFD (-) PBIAS (%) NSE (-) 
0,1 0.208 0.373 
0,15 (default) 0.210 0.381 
0,3 0.215 0.405 
0,4 0.218 0.420 
0,5 0.219 0.433 
0,7 0.214 0.456 
0,9 0.168 0.470 
1 -0.024 0.472 

 

3.2.3. Optimal parameter values 

In the previous chapters, a full model run was carried out using the best-performing parameters 

highlighted in green, in order to evaluate the success of the calibration and the overall 

performance of the model. The selected, calibrated parameters are summarized in Table 14. 
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The value of Kc differs from the previously indicated optimal choice highlighted in green: 

rather than the originally applied Kc = 3.1, a value of 2.7 was used in this final simulation. This 

adjustment was made because, when the model was run with the complete parameter set, Kc = 

2.7 yielded the most favorable performance metrics. Compared to earlier simulations, this 

change was therefore intended to further improve the model’s overall accuracy. 

Table 14 Optimal values 

Parameter Calibrated value Unit 

Kc 2,7 - 

Root Zone Conductivity (RZC) 15 mm/day 

Soil Water Capacity (SWC) 500 mm 

Deep Conductivity (DC) 1000 mm/day 

Deep Water Capacity (DWC) 10 mm 

Runoff Resistance Factor (RRF) 2 - 

Preferred Flow Direction (PFD) 0,9 - 

 

The simulations resulted in PBIAS = -5.998% and NSE = 0.552, which fall within the 

"satisfactory" model performance range according to the categorization scheme proposed by 

(Moriasi et al., 2015). Although the results obtained can be considered satisfactory, the question 

arises whether further fine-tuning could lead to additional improvements in the model's 

performance. 

3.2.4. Calibration of melting and freezing point 

Since the model was not originally developed for Scandinavian climatic conditions, a detailed 

examination of snow-related hydrological processes—particularly snow accumulation and 

snowmelt—was deemed necessary. To this end, some critical parameters related to climatic 

factors, such as melting point (MP) and freezing point (FP), were calibrated. The preliminary 

expectation before the calibration was that adjusting these factors would improve the model 

performance. 

Melting Point calibration 

In the model, the melting point (MP) defines the temperature threshold above which snowmelt 

begins. The default value is +5 °C; however, the parameter can be adjusted within a range of -

50 °C to +50 °C. During the calibration process, PBIAS and NSE performance indicators were 
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evaluated across a range of temperature values. Based on the results (see Table 15), a melting 

point of 4 °C yielded the best model fit, characterized by low PBIAS and high NSE values. 

Therefore, this value is considered optimal under the given climatic conditions. 

Table 15 Calibration of Melting Point (MP) for the whole period 

MP+Kc=3,1 
MP (°C) PBIAS (%) NSE (-) 
10 1.944 0.288 
5 (default) 0.210 0.381 
4 -0.076 0.385 
3 -0.289 0.381 
2 -0.459 0.376 
0 -0.659 0.364 

 

 

Figure 16 Relative streamflow as a function of Melting Point during the Jan–Feb 2008 Period 
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Figure 17 Streamflow as a function of Melting Point during the Jan–Feb 2008 Period 

Figures 16 and 17 illustrate snowmelt events during a randomly selected year – specifically, the 

winter of 2008 – under various melting point (MP) settings. Figure 15 demonstrates the impact 

of different MP values on relative discharge, while Figure 16 compares the simulated discharge 

for each setting with the observed discharge (Obs) data. 

According to the figures, variations in MP have only a moderate influence on model output. 

The curves generated under different settings follow very similar trends, with only minor 

differences observed in the magnitude and timing of peak flows. This suggests that calibrating 

the melting point does not lead to drastic changes in runoff dynamics; however, based on the 

NSE and PBIAS indicators, it can still yield modest improvements in model fit. 

Freezing Point calibration 

In the model, the freezing point (FP) represents the temperature threshold below which 

precipitation accumulates in solid form (as snow). The default value is -5 °C, and the parameter 

can be adjusted within the same range as the MP parameter. According to the calibration results 

(see Table 16), a value of -5 °C provided the best model performance, indicating that no 

adjustment of the default setting is necessary. 
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Table 16 Calibration of Freezing Point (FP) for the whole period 

FP+Kc=3,1 
FP (°C) PBIAS (%) NSE (-) 
-10 -0.306 0.376 
-7 -0.058 0.379 
-6 0.063 0.380 
-5 (default) 0.210 0.381 
-4 0.390 0.381 
-3 0.608 0.379 
0 1.688 0.367 

 

 

 

Figure 18 Relative streamflow as a function of Freezing Point during the Jan–Feb 2008 
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Figure 19 Streamflow as a function of Freezing Point during the Jan–Feb 2008 Period 

Figures 18 and 19 present a snowmelt event during a randomly selected year – specifically, the 

winter of 2008 – demonstrating the effects of varying the freezing point (FP). The figures 

indicate that changes in the freezing point have a negligible impact on model performance. 
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Optimal parameter values 

To assess overall model performance, the calibrated melting and freezing points were 

incorporated into the simulation alongside the previously identified best-performing 

hydrological parameters. The applied parameter values are summarized in Table 17. 

Table 17 Final optimal values for the whole period 

Parameter Calibrated values Unit 

Kc 2,7 - 

Root Zone Conductivity (RZC) 15 mm/day 

Soil Water Capacity (SWC) 500 mm 

Deep Conductivity (DC) 1000 mm/day 

Deep Water Capacity (DWC) 10 mm 

Runoff Resistance Factor (RRF) 2 - 

Preferred Flow Direction (PFD) 0,9 - 

Melting Point (MP) 4 °C 

Freezing Point (FP) -5 °C 

 

The results of the updated simulation are PBIAS = -6.209%, NSE = 0.553. These results 

represent a slight improvement over the previous simulation, particularly in terms of the NSE 

indicator, which reflects an enhanced predictive capacity of the model. Thus, the calibrated 

melting and freezing point therefore contribute slightly to fine-tuning the model, especially in 

cold, snow-covered regions. 
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Figure 20 Annual average streamflow using parameters calibrated for the whole period 

 

Figure 21 Changes in measured and simulated streamflow in 2004 using parameters 

calibrated for the whole period 

Figures 20 and 21 compare the simulated ("Runoff") and observed ("Gauge") streamflow. The 

graphs are taken directly from the WEAP software. Figure 20 illustrates the annual average 

streamflow trends over the period 1986–2014, while Figure 21 presents the daily streamflow 

time series for a randomly selected year (2004).  

Based on Figure 20, it can be concluded that there is generally good agreement between the 

simulated and observed streamflow. The figure also shows that no observed data was available 

for the year 1992. Overall, the model is capable of reproducing the interannual variability of 
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streamflow, effectively capturing fluctuations driven by precipitation and other hydrological 

factors.  

Figure 21 offers a more detailed view of model performance at a daily resolution. For the year 

2004, the simulated and observed data show a strong correlation, especially during periods of 

low and moderate flow. The model adequately represents key features of runoff dynamics, 

including the system’s response to precipitation events and subsequent recession phases. The 

largest deviations occur during peak flow events. In these cases, observed values are generally 

higher than simulated ones, suggesting that the model may underestimate runoff associated with 

extreme precipitation events. 

3.3.  Seasonal calibration of the model for summer and winter periods 

Although the calibration of the model for the whole period has already shown satisfactory 

results, the question arises whether the performance of the model can be further improved by 

calibrating the model separately for summer and winter, taking seasonal variability into 

account. In this approach, snow-related processes such as snow accumulation and snowmelt 

could be isolated or excluded from individual simulation periods, thereby potentially improving 

overall model performance. The following section explores this possibility. 

For the study, the one-year period was divided into two segments: 

• Winter period: November 1 – April 30 

• Summer period: May 1 – October 31 

Characteristics of the winter period 

During winter, temperatures drop significantly, promoting snow accumulation and surface ice 

formation. Most precipitation falls in solid form (as snow), which is temporarily stored in the 

catchment area and does not immediately appear in the streamflow. Consequently, discharge 

levels are generally low, while the spring snowmelt can cause sudden and significant runoff 

events, potentially resulting in flood peaks. 

Characteristics of the summer period 

The summer period is characterized by rising temperatures and variable precipitation patterns. 

In May and June, high discharge may result from the significant water excess generated by 

snowmelt. In mid-summer, decreasing precipitation and increased evaporation often lead to 
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lower water levels. In September and October, frequent rainfall typically causes streamflow to 

rise again. 

Given the contrasting hydrological characteristics of these two periods, separate calibration is 

justified. This approach enables a more accurate representation of seasonal model sensitivity 

and offers the potential to further improve simulation performance. 

Calibration Method 

In this case, calibration was performed by applying a consistent set of parameter values across 

the entire simulation period (a distinct parameter set was used for the summer and winter cali-

brations, respectively). Using the selected parameter set, I ran the simulation over the full pe-

riod. From the resulting streamflow time series, only the months corresponding to the target 

season (i.e., either summer or winter) were extracted. The NSE and PBIAS performance indi-

cators were then calculated based solely on this season-specific subset of the data. 

3.3.1. Calibration of Kc 

To investigate the seasonal sensitivity of the Kc (crop coefficient) parameter, calibration was 

performed separately for the summer and winter periods. Model fit was evaluated using the 

statistical indicators PBIAS and NSE. The results are summarized in Table 18. 

Table 18 Calibration of Kc for summer and winter periods 

 Kc 
Kc (-) PBIAS - Nyár (%) NSE - Nyár (-) PBIAS - Tél (%) NSE - Tél (-) 
1 -58.264 0.331 -22.259 0.356 
2 -26.626 0.364 -9.280 0.368 
2,3 -19.317 0.359 -5.886 0.367 
2,4 -17.064 0.356 -4.803 0.366 
2,5 -14.896 0.353 -3.743 0.365 
2,6 -12.809 0.350 -2.706 0.365 
2,7 -10.800 0.346 -1.691 0.364 
2,8 -8.864 0.343 -0.698 0.363 
2,9 -7.000 0.339 0.274 0.361 
3 -5.203 0.335 1.226 0.360 
3,1 -3.471 0.331 2.158 0.359 
3,2 -1.800 0.327 3.070 0.357 
4 9.655 0.292 9.740 0.343 
5 - - 1.093 0.491 
6 - - -5.145 0.489 
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The values in green represent the best compromise for the model's performance over the period. 

However, it can be concluded that seasonal calibration did not result in a significant 

improvement for the summer period; in fact, a decline in the NSE value was observed compared 

to the calibration performed over the full year (see Table 6 above).  

This suggests that seasonal adjustment of the Kc parameter alone can be insufficient to improve 

model performance, and that further investigation of parameter combinations or seasonal 

calibration of additional variables may be necessary. 

3.3.2. Calibration of other parameters 

To further improve model performance, a seasonal calibration of key hydrological parameters 

was conducted – namely, Root Zone Conductivity (RZC), Soil Water Capacity (SWC), Deep 

Conductivity (DC), Deep Water Capacity (DWC), Runoff Resistance Factor (RRF), and 

Preferred Flow Direction (PFD) – separately for the summer period (May 1 – October 31) and 

the winter period (November 1 – April 30). For the Kc parameter, the original value for the full 

simulation period (Kc = 3.1) was retained for both seasons. Although separately determined Kc 

values (e.g., 3.2 for summer and 5 for winter) could theoretically provide more seasonally 

accurate evapotranspiration estimation, the globally applied value was deemed a suitable 

compromise for the study's objectives and to maintain modeling consistency. As such, the 

effects of seasonal differences were assessed by adjusting the remaining parameters while 

keeping Kc constant. 

Calibration of Root Zone Conductivity 

The RZC parameter was modified in several steps, and model fit for each value was evaluated 

using the PBIAS and NSE indicators, separately for the summer and winter periods. The results 

are summarized in Table 19. 

Table 19 Calibration of Root Zone Conductivity (RZC) for summer and winter periods 

 RZC+Kc=3,1 
RZC 
(mm/day) 

PBIAS – 
Summer (%) 

NSE – 
Summer (-) 

PBIAS – 
Winter (%) 

NSE – 
Winter (-) 

10 10.561 0.369 10.854 0.364 
15 2.294 0.348 6.003 0.367 
19 -2.452 0.334 2.861 0.361 
20 (default) -3.471 0.331 2.158 0.359 
21 -4.435 0.328 1.483 0.356 
25 -7.849 0.316 -0.961 0.347 
40 -16.819 0.285 -7.600 0.310 
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Based on the results, the optimum value of Root Zone Conductivity is 15 mm/day in both 

periods. This value resulted in the lowest bias (PBIAS) and provided relatively balanced model 

performance (NSE). 

Calibration of Soil Water Capacity 

The Soil Water Capacity (SWC) parameter was calibrated to fine tune the hydrological 

performance of the model, separately for the summer and winter periods. The SWC value was 

varied over a wide range (200-2000 mm) and the model performance for each value was 

evaluated using the PBIAS and NSE indicators. The results are shown in Table 20. 

Table 20 Calibration of Soil Water Capacity (SWC) for summer and winter periods 

 SWC+Kc=3,1 

SWC (mm) 
PBIAS – 

Summer (%) 
NSE – 

Summer (-) 
PBIAS – 

Winter (%) 
NSE –   

Winter (-) 
200 -9.602 0.652 -10.430 0.464 
500 -2.955 0.476 -6.233 0.426 
900 -2.979 0.351 0.447 0.371 
950 -3.212 0.340 1.306 0.365 
975 -3.339 0.335 1.733 0.362 
980 -3.365 0.334 1.818 0.361 
1000 (default) -3.471 0.331 2.158 0.359 
2000 -9.405 0.244 15.565 0.272 

 

Based on the calibration results, SWC = 200 mm for the summer period and SWC = 500 mm 

for the winter period showed the best balance between PBIAS and NSE. 
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Calibration of Deep Conductivity 

For the Deep Conductivity (DC) parameter, the calibration covered a broad range from 10 to 

5000 mm/day. Model performance across this range was evaluated separately for each season. 

The corresponding PBIAS and NSE values are presented in Table 21. 

Table 21 Calibration of Deep Conductivity (DC) for summer and winter periods 

 DC+KC=3,1 

DC (mm/day) 
PBIAS – 

Summer (%) 
NSE – 

Summer (-) 
PBIAS – 

Winter (%) 
NSE –  

Winter (-) 
10 -8.979 0.332 5.162 0.365 
20 (default) -3.471 0.331 2.158 0.359 
30 0.281 0.332 0.150 0.356 
40 3.021 0.334 -1.311 0.355 
100 11.081 0.346 -5.593 0.357 
200 15.667 0.359 -8.019 0.363 
400 18.755 0.373 -9.645 0.371 
500 19.467 0.377 -10.018 0.374 
1000 20.992 0.390 -10.816 0.382 
2000 21.781 0.402 -11.225 0.391 
5000 22.217 0.416 -11.450 0.401 

 

The results show that DC = 100 mm/day for the summer period and DC = 200 mm/day for the 

winter period give the best performance. 

Calibration of Deep Water Capacity  

Deep Water Capacity values were tested in the range 10-2000 mm. The model fit was evaluated 

according to Table 22. 

Table 22 Calibration of Deep Water Capacity (DWC) for summer and winter periods 

 DWC+Kc=3,1 

DWC (mm) 
PBIAS – 

Summer (%) 
NSE –  

Summer (-) 
PBIAS –  

Winter (%) 
NSE –  

Winter (-) 
10 22.322 0.461 -11.496 0.428 
50 22.306 0.423 -11.495 0.406 
100 21.781 0.402 -11.225 0.391 
250 17.913 0.368 -9.202 0.369 
500 9.289 0.343 -4.643 0.356 
750 1.899 0.333 -0.712 0.355 
1000 (default) -3.471 0.331 2.158 0.359 
2000 -12.893 0.337 7.313 0.372 
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Based on the calibration, DWC = 500 mm for the summer period and DWC = 10 mm for the 

winter period give the best performance. 

Calibration of Runoff Resistance Factor 

The Runoff Resistance Factor (RRF) was varied within the range of 1 to 4. Based on PBIAS 

and NSE indicators, an RRF value of 1.5 the summer, and RRF value of 2 for the winter 

provided the most balanced model performance. Table 23 presents the statistical performance 

metrics associated with different RRF values, using a fixed Kc = 3.1. The results indicate that 

the model is highly sensitive to changes in this parameter. 

Table 23 Calibration of Runoff Resistance Factor (RRF) for summer and winter periods 

 RRF+Kc=3,1 

RRF (-) 
PBIAS – 

Summer (%) 
NSE – 

Summer (-) 
PBIAS – 

Winter (%) 
NSE – 

Winter (-) 
1 -14.897 0.482 -2.961 0.368 
1,5 -7.038 0.430 0.006 0.388 
2 (default) -3.471 0.331 2.158 0.359 
4 -1.869 0.088 7.168 0.196 

 

Calibration of Preferred Flow Direction 

The Preferred Flow Direction (PFD) parameter was tested over the interval from 0.1 to 1. 

According to the calibration results shown in Table 24, for the summer period PFD = 0.5, for 

the winter period PFD = 0,7 yielded the most favorable outcomes. 

Table 24 Calibration of Preferred Flow Direction (PFD) for summer and winter periods 

 PFD+Kc=3,1 

PFD (-) 
PBIAS – 

Summer (%) 
NSE – 

Summer (-) 
PBIAS – 

Winter (%) 
NSE – 

Winter (-) 
0,1 -4.404 0.319 2.649 0.351 
0,15 (default) -3.471 0.331 2.158 0.359 
0,3 -0.444 0.364 0.564 0.379 
0,4 1.792 0.385 -0.615 0.391 
0,5 4.232 0.405 -1.905 0.403 
0,7 9.867 0.439 -4.896 0.421 
0,9 16.828 0.463 -8.651 0.430 
1 20.794 0.470 -11.043 0.430 
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3.3.3. Calibration of Melting and Freezing Points 

Snow-related processes, such as snow accumulation and melting, play a critical role in 

modelling water balance, especially for seasonal distribution. To enhance model performance, 

the Freezing Point (FP) and Melting Point (MP) parameters were calibrated separately for the 

summer and winter periods. 

Calibration of Freezing Point  

The freezing point was examined in the range of -10 °C to 0 °C. Table 25 presents the model 

performance metrics for different FP values, with the most optimal values highlighted in green. 

Table 25 Calibration of Freezing Point (FP) for summer and winter periods 

 FP+Kc=3,1 

FP (°C) 
PBIAS – 

Summer (%) 
NSE – 

Summer (-) 
PBIAS – 

Winter (%) 
NSE – 

Winter (-) 
-10 -1.872 0.332 0.524 0.349 
-7 -2.659 0.332 1.319 0.354 
-6 -3.027 0.331 1.699 0.357 
-5 (default) -3.471 0.331 2.158 0.359 
-4 -4.000 0.330 2.714 0.359 
-3 -4.641 0.329 3.386 0.356 
0 -7.652 0.325 6.632 0.339 

 

Calibration of Melting Point  

The melting point was tested over a range of 0 °C to 10 °C. According to Table 26, the value of 

0 °C was optimal for the summer period, and 4 °C for the winter period. 

Table 26 Calibration of Melting Point (MP) for summer and winter periods 

 MP+Kc=3,1 

MP (°C) 
PBIAS – 

Summer (%) 
NSE – 

Summer (-) 
PBIAS – 

Winter (%) 
NSE – 

Winter (-) 
10 -9.450 0.313 7.974 0.215 
5 (default) -3.471 0.331 2.158 0.359 
4 -2.546 0.332 1.232 0.364 
3 -1.792 0.333 0.507 0.357 
2 -1.151 0.334 -0.092 0.348 
0 -0.367 0.334 -0.813 0.329 
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3.3.4. Optimal parameter values 

The previously described seasonal calibrations resulted in individually optimized parameter 

values for each season. Simulations were conducted using the green-highlighted parameter 

combinations to assess hydrological model performance based on PBIAS and NSE indicators. 

Two simulation configurations were applied: one that included the melting point (MP) and 

freezing point (FP) parameters, and one that excluded them. The final, best-performing 

parameter combinations are presented in Table 27 and the final simulation results are shown in 

Table 28. 

Table 27 Final best ideal values for summer and winter periods 

Parameter 

Calibrated value 

 – Summer 

Calibrated value 

– Winter Unit 

Kc 3,2 5 - 

Root Zone Conductivity (RZC) 15 15 mm/day 

Soil Water Capacity (SWC) 200 500 mm 

Deep Conductivity (DC) 100 200 mm/day 

Deep Water Capacity (DWC) 500 10 mm 

Runoff Resistance Factor (RRF) 1,5 2 - 

Preferred Flow Direction (PFD) 0,5 0,7 - 

Melting Point (MP) 0 4 °C 

Freezing Point (FP) -10 -5 °C 

 

Table 28 Final simulation results 

 

PBIAS – 

Summer (%) 

NSE – 

Summer (-) 

PBIAS – 

Winter (%) 

NSE – 

Winter (-) 

Good -6.664 0.719 1.093 0.491 

Good+MP,FP -7.621 0.714 1.684 0.496 

 

Based on the results, it can be concluded that applying the calibrated values for freezing and 

melting points decreased model performance during the summer period, while improving it 

during the winter. This suggests that temperature-driven snow processes play a more significant 

role in winter, whereas in summer, these parameters may have a negligible or even disruptive 

effect on the model. 

Although the statistical indicators for the winter period worsened compared to the values 

obtained for the full period, they still fall within the “satisfactory” model performance category 

defined by (Moriasi et al., 2015). In contrast, the indicators for the summer period show 

significant improvement. 
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Figure 22 Changes in measured and simulated streamflow in 2004 using parameters 

calibrated for the summer period 

 

Figure 23 Changes in measured and simulated streamflow in 2004 using parameters 

calibrated for the winter periods 

Figures 22 and 23 present the simulated and observed streamflow for a randomly selected year. 

The graphs are taken directly from the WEAP software. Figure 22 shows the results of the 

model calibrated for the summer period, while Figure 23 displays the results from the winter-

calibrated model. 

In Figure 22, it is evident that the model captures the smaller and medium-scale flow 

fluctuations relatively well; however, it occasionally underestimates the larger flood peaks. In 
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some cases, the model's response time is faster than observed, meaning that the simulation 

begins rising earlier than the actual event. Overall, the model provides reliable results, and the 

summer calibration generally shows good agreement. 

Figure 23 demonstrates that the model is unable to accurately reproduce the larger flood peaks. 

The simulated values consistently underestimate the observed peak discharges and exhibit a 

smoother hydrograph shape. While the model still performs well during low-flow periods, it 

responds less sensitively to rapid changes caused by precipitation events. It can be concluded 

that the model calibrated for winter conditions fail to reliably simulate the larger flood events, 

suggesting that winter precipitation (rain, snow, and meltwater) is still not adequately 

represented in the model’s parameterization. 

3.3.5. Equifinality – GLUE 

Throughout the calibration process, it is essential to consider the principle of equifinality, which 

represents a major source of uncertainty in hydrological modeling (K. Beven, 2006). 

Equifinality describes the phenomenon where a given model can produce similarly good fits to 

observations with different parameter sets – implying that there is not necessarily a single "best" 

set of parameters. 

A widely used method for quantifying model uncertainty and addressing equifinality is the 

Generalised Likelihood Uncertainty Estimation (GLUE) approach, introduced by K. J. Beven 

& Binley (1992). Instead of searching for a single optimal parameter set, GLUE accepts 

multiple parameter combinations that sufficiently match the observations. It assigns likelihood 

values to these combinations based on model performance allowing statistical interpretation of 

model output uncertainties and the determination of predictive probability ranges. 

The GLUE method thus also helps to reveal the structural uncertainty of the model, as not only 

the parameters but also different elements of the model setup (e.g. representation of 

hydrological processes) can affect the equivalence of the results. In this context, it is important 

to acknowledge that a certain level of uncertainty is inevitable in modeling and should be 

explicitly addressed as part of the decision-support process. 

This emphasizes that, although a reasonably well-fitting parameter combination was identified 

during the model calibration, it should not necessarily be considered the optimal solution. In 

line with the principle of equifinality, it is possible that other parameter sets could provide 

similarly good or even better fits. Therefore, the results of the calibration should be interpreted 
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not as a definitive solution, but as one of several plausible outcomes, especially when the model 

is intended to support decision-making processes. 

3.4.  Model validation 

Model validation is an essential step in the model development process. In this study, validation 

was carried out using the remaining one-third of the available data, covering the period from 

1974 to 1986. During the validation, the same calibrated parameter set – originally optimized 

for the full calibration period (1987–2014) – was applied without any further modification. 

No validation was performed using the parameters calibrated separately for summer and winter 

periods, as the model structure did not support the simultaneous application of season-specific 

parameters across the entire time series. Since these parameter sets were tailored specifically 

for summer or winter months, applying them to the full year (and thus for validation purposes) 

would not have yielded realistic or representative results. 

The validation produced a PBIAS of –9.84% and a Nash-Sutcliffe Efficiency (NSE) of 0.483. 

Although the NSE value falls below the commonly accepted threshold for satisfactory model 

performance suggested by (Moriasi et al., 2015), the results can still be considered acceptable, 

particularly given that the validation was conducted for a fully independent, earlier time period. 

Furthermore, the outcomes align with the general expectation that model performance tends to 

be lower during validation than during calibration, since the parameter set is optimized specif-

ically for the calibration period and may not perform equally well in a different period with 

different hydrological characteristics. 
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3.5.  Assessment of future climate scenarios 

The three climate models (NorESM2-LM, MPI-ESM1-2-HR, and HadGEM3-GC31-MM) 

were run for a 30-year future period between 2060 and 2090, and their outputs were compared 

to simulated historical data for the 1980–2010 reference period. 

 

Figure 24 Monthly average streamflow under different scenarios 

Table 29 Future streamflow compared to the reference period 

  

Average values of 
the 30 years 
(m3/s) 

Change compared to historical 
where historical data is 
considered as 100% (%) 

 

Historical 
simulation 8.338 100 

NorESM2-LM 

SSP1-2.6 5.631 67.541 

SSP2-4.5 5.905 70.826 

SSP5-8.5 5.728 68.697 

MPI-ESM1-2-HR 

SSP1-2.6 5.485 65.789 

SSP2-4.5 5.114 61.335 

SSP5-8.5 5.271 63.215 

HadGEM3-GC31-MM 
SSP1-2.6 5.503 65.994 

SSP5-8.5 5.408 64.862 

 

Figure 24 illustrates the monthly average streamflow values projected for the future period 

(2060–2090), based on different SSP scenarios of three global climate models (NorESM2-LM, 
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MPI-ESM1-2-HR, and HadGEM3-GC31-MM), compared to the simulated values of the 

reference period (1980–2010).  

Compared to the simulated historical data, most future scenarios differ in nearly all months. 

The most striking changes occur during the winter and early spring months (January–April), 

where streamflow values are generally lower than in the historical reference. This suggests that 

snowmelt may occur earlier or that snow accumulation may decrease due to warmer 

temperatures. Such changes are particularly relevant for spring flooding risks and reservoir 

management. 

During the summer months (June–August), all three models and scenarios project low 

streamflow values. This supports the widely expected climate trend of more frequent summer 

droughts, which could have adverse impacts on ecosystems, water use, and agriculture. 

In the autumn and early winter months (October–December), streamflow values mostly remain 

lower or similar to those of the reference period. This may indicate that precipitation in the 

future will continue to fall mostly in liquid form during these months, yet immediate runoff will 

not significantly exceed past levels. 

Table 29 shows the ratio of future streamflow values compared to the simulated historical 

reference, which is considered as 100%. According to the future climate scenarios, the 

calculated streamflow is significantly lower than those of the 1980–2010 reference period. 

Based on the different emission scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) applied to the three 

examined climate models (NorESM2-LM, MPI-ESM1-2-HR, and HadGEM3-GC31-MM), 

average future streamflow values only reach 61–71% of the reference levels. 

This implies that, as a result of climate change, streamflow is projected to decrease by 

approximately 29–39% during the examined future period (2060–2090), depending on the 

specific model–scenario combination. The greatest decrease is indicated by the MPI-ESM1-2-

HR model under the SSP2-4.5 scenario (only 61.3%), while the smallest reduction is found in 

the NorESM2-LM model under the same scenario (70.8%). 
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Figure 25 Average monthly streamflow values under different scenarios 

Figure 25 clearly illustrates how the annual hydrograph evolves under various climate model–

scenario combinations in the future, compared to the results of the historical simulation. The 

most striking feature shown in the figure is that all future scenarios indicate a flattening of the 

annual streamflow curve. 

While the simulated historical data is characterized by a sharp spring peak (in March), this rise 

is much more moderate and spread out in the future scenarios. This suggests that snowmelt may 

occur earlier or more rapidly, leading to a less concentrated spring runoff peak compared to the 

past. 

During the summer months (June–August), the models consistently project persistently low 

streamflow values, indicating that the summer period may become even drier in the future. It is 

also evident that the differences between the lines are smallest during these months, meaning 

the models are in strong agreement regarding the future summer water deficit. 

In the winter months (November–December), the simulated historical curve is clearly higher, 

implying that future scenarios do not indicate a significant increase in water availability by the 

end of the year. This holds true even though milder winters may result in more precipitation 

falling as rain rather than snow. This suggests that the watershed’s hydrological response at the 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

St
re

am
flo

w
 (m

3/
s)

Month

Historical NorESM2-LM SSP1-2.6 NorESM2-LM SSP2-4.5

NorESM2-LM SSP5-8.5 MPI-ESM1-2-HR SSP1-2.6 MPI-ESM1-2-HR SSP2-4.5

MPI-ESM1-2-HR SSP5-8.5 HadGEM3-GC31-MM SSP1-2.6 HadGEM3-GC31-MM SSP5-8.5



53 

 

end of the year is unlikely to change substantially compared to current conditions, even if the 

rain–snow ratio shifts. 

 

Figure 26 Average summer and winter minimum flows under different scenarios 

Table 30 Average summer and winter minimum flows 

  

Summer 
(m3/s) 

Winter 
(m3/s) 

 

Historical 
simulation 0.508 3.511 

NorESM2-LM 

SSP1-2.6 0.476 3.183 

SSP2-4.5 0.479 3.192 

SSP5-8.5 0.336 3.021 

MPI-ESM1-2-HR 

SSP1-2.6 0.608 2.766 

SSP2-4.5 0.463 2.591 

SSP5-8.5 0.423 2.879 

HadGEM3-GC31-MM 

SSP1-2.6 0.380 2.646 

SSP5-8.5 0.280 2.383 

 

Figure 26 and Table 30 present the lowest summer and winter streamflow values projected 

under different climate scenarios, compared to the results of the historical simulation. The 

lowest streamflow values were calculated by selecting the single lowest daily discharge for each 

year during the summer and winter seasons, respectively. These annual minimum values were 

then averaged for each climate scenario. As a result, the average minimum summer and winter 
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streamflow values for each scenario were obtained, offering a clear representation of future 

trends in low-flow periods. 

In the summer season, the historically simulated minimum streamflow was 0.508 m³/s. 

Compared to this reference value, most future scenarios indicate a decrease. The NorESM2-

LM model shows lower values across all examined scenarios, particularly under the SSP5-8.5 

pathway, where the projected minimum flow drops to just 0.336 m³/s. The MPI-ESM1-2-HR 

model shows a slight increase under the SSP1-2.6 scenario (0.608 m³/s), but reductions are 

observed in the other scenarios. The HadGEM3-GC31-MM model predicts the lowest summer 

flows in both of its examined scenarios (SSP1-2.6 and SSP5-8.5), especially under SSP5-8.5, 

where the value declines to 0.280 m³/s. These results suggest that a significant drop in summer 

flows can be expected, particularly under pessimistic emission scenarios. Such reductions can 

make summer drought periods more difficult and present serious challenges for water resource 

management. 

In the winter season, the historically simulated minimum streamflow was 3.511 m³/s. Future 

projections also show generally lower values in winter, although the degree of reduction is less 

severe than in summer. The NorESM2-LM model projects winter flows around 3 m³/s across 

all three scenarios, with the lowest value again occurring under SSP5-8.5 (3.021 m³/s). The 

MPI-ESM1-2-HR model shows a more pronounced decline, especially under SSP2-4.5 (2.591 

m³/s). The HadGEM3-GC31-MM model also forecasts reduced winter streamflow, 2.646 m³/s 

under SSP1-2.6 and as low as 2.383 m³/s under SSP5-8.5. 
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4. Conclusion 

4.1.  Data sources and initial analyses  

In the initial phase of this study, a comparative analysis was conducted between the global 

meteorological dataset integrated into the WEAP software – compiled by Princeton University 

– and local Norwegian data sources. For reference, data provided by SeNorge and the Norsk 

Klimaservicesenter (NKSS) were used. 

The results of this comparison indicated that while the Princeton dataset is easily accessible and 

globally consistent, it is less reliable at the local level, especially in terms of precipitation 

intensity and temperature extremes. Due to greater temporal and spatial averaging, it fails to 

accurately reflect the specific climatic characteristics of Norway. 

In contrast, the SeNorge data proved to be more accurate, particularly concerning extreme 

weather events, which is probably due to the denser network of stations and more detailed and 

locally calibrated measurement methods. Furthermore, a strong correlation was observed 

between the SeNorge and NKSS datasets, further supporting the reliability of SeNorge data. 

An additional comparison was conducted on snow depth datasets. The results showed a more 

rapid decrease in snow depth in the SeNorge data, suggesting that snowmelt occurs earlier than 

indicated by the Princeton dataset. This implies that the Princeton temperature model may not 

accurately reflect local conditions and fails to capture regional thermal dynamics effectively. 

Based on these findings, the SeNorge dataset was selected as the primary source of input data 

for the hydrological model, as it offers the most reliable representation of Norwegian 

precipitation, temperature conditions, and snow-related processes. 

4.2.  Calibration of the model for the whole period 

The model was calibrated for the full calibration period (1987–2014). Based on the simulation 

results, model performance is considered satisfactory: PBIAS = –6.209% and NSE (Nash–

Sutcliffe Efficiency) = 0.553. The NSE value exceeds the general acceptability threshold, and 

the negative PBIAS indicates a slight underestimation of streamflow during the analyzed 

period. The calibrated parameter values used are summarized in Table 17 (“Final optimal values 

for the whole period”). 
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Overall, the model follows the measured data series more accurately at low and medium flows, 

but during periods of high flows, such as those caused by sudden rainfall or snowmelt, the 

model tends to underestimate maximum flows. 

4.3. Seasonal calibration of the model for summer and winter periods 

Based on the seasonal evaluation of the model’s performance, it can be concluded that the 

simulation for the summer period yielded significantly better results (NSE = 0.719, PBIAS = –

6.664%), while performance during the winter period remained weaker (NSE = 0.496, PBIAS 

= +1.684%) and did not exceed the metrics calculated for the full period. 

This can partly be attributed to the fact that the internal hydrological processes in the WEAP 

model form a non-linear system, meaning that parameters influence each other and may behave 

differently across seasons. In addition, the difference in model performance between summer 

and winter months suggests that the model is more sensitive and accurate to the more intense 

evaporation and water movement in summer, while it is less accurate for snow-related processes 

in winter. 

The lower performance in the winter period is also partly due to the reduction in available data 

when the time series is divided seasonally, which gives less statistically stable results. 

Additionally, for statistics calculated over the full calibration period, errors tend to balance each 

other out. In contrast, this compensatory effect is absent in seasonal analyses, which can lead 

to a deterioration in statistical indicators. 

4.4. Model validation 

The model was validated using the remaining part of the time series, independent of the 

calibration period, covering the years 1974–1986. The validation yielded the following 

statistical results: PBIAS = –9.84%, NSE = 0.483.  

The negative PBIAS indicates that the model continued to underestimate streamflow. Although 

the NSE value falls slightly below the generally accepted "satisfactory" threshold, it still 

indicates moderate model performance, particularly given that the parameter set was not 

specifically tuned for this period. 

In summary, the results of the validation show that the model can reproduce the streamflow 

outside the calibration period in a limited but still applicable way. The predictive ability of the 

model therefore cannot be considered fully generalizable, but it is still capable of identifying 

basic hydrological patterns and streamflow trends. 
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4.5.  Assessment of future climate scenarios 

Future hydrological conditions were analyzed using three global climate models (NorESM2-

LM, MPI-ESM1-2-HR, HadGEM3-GC31-MM) under various Shared Socioeconomic 

Pathways (SSPs). The analyzed period covered 30 years, from 2060 to 2090. For the 

simulations, parameter values previously calibrated for the full 1987-2014 period were used to 

ensure comparability with the historical reference period (1980-2010). 

Simulation results for future streamflow indicate a systematic decrease in annual average 

discharge, ranging between 29% and 39% depending on the model and scenario. The most 

significant change occurs in the magnitude of spring flood peaks, which previously occurred as 

a result of snowmelt. These peaks are expected to become more moderate in the future due to 

reduced snow accumulation and earlier melting. Additionally both summer and winter 

minimum streamflows are also expected to decrease significantly, especially under high-

emission scenarios such as SSP5-8.5. 

Overall, the projected decline in streamflow, particularly during summer, poses a serious 

challenge for future water resource management. These findings highlight the need for climate 

adaptation measures, including expanded reservoir capacity, improved water use efficiency, and 

strategies to address seasonal shifts in water demand. 
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