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drought calculations, instream habitat assessments and climate impact studies. The majority of the

hydrological studies in Norway, including daily inflow calculations by the hydropower companies as well as

the daily forecasting carried out by the national authorities, are based on the HBV-model, or some variant

based on the concept of the HBV-model. HBV has the advantage that it is tailor-made for cold climate

conditions, as we experience in Norway, but has limitations in representing the human interventions (e.g.

hydropower operations, water withdrawals, etc.). WEAP is a model developed by the Stockholm Environment

Institute (SEI) and has been applied to a large number of cases internationally, but to a limited extent in

Norway. WEAP consists of a hydrological model describing the “supply” of water, and a set of routines

describing the “demands’, i.e. the use of water. WEAP also has the advantage that climatic input data, a

digital terrain model, land cover data and future climatic data can be directly downloaded for the selected

case study region, as such can potentially be very quick to configure. The purpose of this study is to test the

model for climatic and hydrological conditions in Norway.

The overall objective of the thesis is to evaluate the performance of the hydrological model WEAP in Norway.

WEAP has mostly been used under conditions different than in Norway, i.e. with different land use and

catchment characteristics and limited snow/glacier accumulation and runoff. In order to evaluate the

performance of the model, the following tasks need to be carried out:

1. Identify a suitable catchment for the performance assessment

2. Compile all relevant data for the purpose of testing the performance

3. Analyze/quality check the data to be used, i.e. compare the built-in datasets in WEAP with the data
available from national data sources in Norway

4, Calibrate/validate WEAP for the selected test catchment by use of suitable statistical criteria

5. Identify and describe quality of the calibration/validation

6. Examine the impact of climate change on the selected test catchment
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Water resource management plays a crucial role in ensuring sustainable development,
especially in regions affected by climate change, such as Norway. The aim of this study was to
assess the applicability of the WEAP (Water Evaluation and Planning) model under Norwegian
climatic and hydrological conditions. As part of the research, the Princeton dataset built in
WEAP was compared with meteorological data from the Norwegian SeNorge and NKSS
sources. The results showed that the local SeNorge data more accurately reflect precipitation

and temperature characteristics, and were therefore used as input for the model.

The model was calibrated for the period 1987-2014, achieving moderate accuracy (NSE =
0.553; PBIAS = —6.209%). A separate calibration for the summer period yielded improved
performance (NSE = 0.719), whereas the model calibrated for the winter months performed less
reliably (NSE = 0.496). The model was validated for the 1974—1986 period (NSE = 0.483),

indicating a limited but usable predictive capability outside the calibration range.

For future streamflow simulations three global climate models and multiple SSP (Shared
Socioeconomic Pathways) scenarios were used to project changes for the 2060—-2090 period.
The simulations suggest a 29-39% decrease in average annual streamflow compared to the
reference period. A particularly notable decline is projected for spring flood peaks, due to
reduced snow accumulation and earlier snowmelt. The significant summer streamflow

reduction implies increased drought risk and water supply uncertainty.

The findings highlight the impacts of climate change on Norway’s water resources and
emphasize the need for adaptive development of water management systems. The study
underscores the importance of locally calibrated hydrological models and high-resolution

regional meteorological data for reliable forecasting of future water management challenges.



1. Introduction

1.1. Overview

Water has always been a significant part of human life. It is well understood that without water,
there is no life. Water is present in every subtle cycle of our lives; there is no area where it does
not appear. Over time, it has increasingly become a part of the economy, as it is used not only
for drinking water supply and irrigation but also for electricity generation through hydropower

plants.

In recent decades, due to climate change and population growth, water has become an
increasingly central issue. Demand has significantly increased, leading to new challenges in
water management. It is crucial to address these challenges within the framework of sustainable
economic development and to define future goals accordingly. In this context, the goal of
sustainable water management for today's society should be the utilization of resources in a way
that ensures their availability for future generations. We bear a significant responsibility in this
regard, and several important objectives can be articulated: sustainable management and
preservation of water resources, optimization of water consumption, maintenance of water
quality, and development of water management infrastructure. In water management, it is
essential to ensure that all sectors — including industry, agriculture, households, and natural
ecosystems — have access to water while reducing unnecessary water use and preventing the
depletion of water resources. To address future challenges, flexible water management systems

are necessary to ensure the efficient and sustainable use of water resources.

In Norway, where more than 70% of the country's major rivers are used for electricity
generation through hydropower plants, water plays a prominent role. It is important to
understand the timing and extent of extreme water flows. Dry periods in southern Norway
mainly occur during the summer, due to high temperatures and low precipitation. In northern
regions, dry periods are more common in winter, when precipitation is stored as snow until the
snow melts in spring. Flood periods mainly occur during the rainy autumn months and during

the spring snowmelt.

Today, when addressing challenges, we cannot overlook climate change, which is making
extreme events - floods, droughts - more and more frequent. These issues are of great
significance for the protection of life and property, as well as for the preservation of ecosystems.
In Norway, the average annual temperature is projected to increase by 1.6 to 4.6 °C by the end

of the century, while average annual precipitation is expected to increase by 8—18% (Hanssen-
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Bauer et al., 2017) As a result of climate change, floods caused by rainfall are expected to
become more frequent, while floods resulting from snowmelt may become less common. Snow-
covered months are likely to be significantly shorter, and due to increased temperatures,
snowmelt is expected to occur earlier (Hanssen-Bauer et al., 2017). In areas where autumn and
winter floods are already dominant, significant increases in flood peaks are anticipated. In some
regions where snowmelt-induced floods have been typical, floods caused by autumn and winter
rainfall may play an increasingly significant role in the future (Lawrence & Hisdal, 2011).

Estimating and forecasting these high-water flows are crucial to aid in flood management.

The complexity of water management necessitates the use of various technologies, as different
models can help to manage water efficiently and sustainably. For example, hydrological models
that simulate the movement and distribution of water under various environmental conditions
are fundamental tools in water management. These models can be used to analyze and identify
the key processes of water balance in a river basin and thus determine the most appropriate

water management strategy to ensure sustainability.

Hydrological models can also aid in the integrated management of water management systems.
In Norway, the most widely used hydrological model is the HBV model (Hydrologiska Byrans
Vattenbalansavdelning), developed by the Swedish Meteorological and Hydrological Institute
(SMHI) in 1972. A significant advantage of this model is its applicability in cold climates,
where snow and ice melt play a crucial role in the water balance of catchment areas. However,
a drawback i1s that the model does not account for human interventions, such as hydropower
plants or water withdrawals, and therefore may not always provide an accurate representation
of reality (Bergstrom, 1976, 1995). In contrast, the WEAP model (Water Evaluation and
Planning) offers the possibility for more complex management of water supply and
consumption. The WEAP software was developed by the Stockholm Environment Institute
(SEI) in 1988. The software allows the modelling of water management depending on the
available data quality and quantity. Additionally, it can model various future water management
scenarios to examine how certain climate scenarios affect water distribution and quantity
(Sieber, 2006). The use of WEAP is common in Africa, China, America, Europe, and around
the world. Applications of WEAP model can be seen in research of Bafares et al. (2024), Li et
al. (2015), Mahamadou Mounir et al. (2011), Sardar Shahraki et al. (2016), Winter et al. (2017).
It is applied for estimating water management strategies, calculating future water demands,
assessing the impacts of climate change, determining irrigation water requirements, and much

more.



Although the WEAP model has been applied in Norwegian contexts (Olabiwonnu, 2020;
Olabiwonnu et al., 2022; Pramudith et al., 2022), no one has yet examined its accuracy. In
Scandinavian countries, the HBV model is much more prevalent and handles climate data more
accurately; however, due to its shortcomings (not accounting for human interventions), I
considered it worthwhile to examine the more complex WEAP model. In this thesis, the
following was examined: how the WEAP model handles the Norwegian climate and snowmelt,

whether the model can be calibrated to suit cold-weather conditions.

The aim of my thesis is to test the WEAP model under Norway's specific climatic and
hydrological conditions, with particular attention to snow and ice accumulation, variations in
water flow, and the applicability of modeling in managing floods and low water flows. In my
research, [ will examine how the WEAP model can be applied in Norwegian water management

practices and how various hydrological and climatic factors influence the model's performance.

1.2. Research Questions
1. Is the WEAP model applicable in Norway?
a. How accurately does the model represent snow accumulation and snowmelt
processes?
b. How reliable is the built-in climate data provided by the model?
c. Can the model be calibrated appropriately to be transferable to other catchments
with similar characteristics?
2. What is the impact of climate change on characteristic streamflow in Norway, and is it

possible to model this using the WEAP software?

1.3. Research Methodology

1. Identify a suitable catchment for the performance assessment

2. Compile all relevant data for the purpose of testing the performance

3. Analyze/quality check the data to be used, i.e. compare the built-in datasets in WEAP
with the data available from national data sources in Norway

4. Calibrate/validate WEAP for the selected test catchment by use of suitable statistical
criteria

5. Identify and describe quality of the calibration/validation

6. Examine the impact of climate change on the selected test catchment



2. Data and method

2.1. Generalities and presentation of the WEAP model

The WEAP (Water Evaluation and Planning System) model was developed by the Stockholm
Environment Institute (SEI) in 1988. WEAP is an integrated hydrological and planning model
that combines watershed-level hydrological processes with water management systems. It is
capable of directly handling climate data and simultaneously modeling both water demand and
supply. With GIS support, built-in ecological and economic analysis modules, and compatibility
with other models (e.g., MODFLOW, QUALZ2K), it enables complex simulations (Sieber,
20006).

WEAP operates on the principle of water balance calculations and is widely applicable to a
range of systems — whether for urban or agricultural water management, smaller catchments, or
complex river systems. It can address a wide range of problems, such as sectoral water demand
analysis, water rights and allocation priorities, groundwater and river simulations, reservoir

operations, hydropower management, pollution monitoring, water needs of ecosystems, etc.

The application of WEAP begins with defining the scope of the study, which includes
specifying the time period, spatial boundaries, and system components. The second step is to
establish the current situation ("Current Accounts"), entering current water demand, pollution,
water resources and infrastructure data. Afterwards, future scenarios are developed based on
different policies, costs and impact factors, and then these scenarios are compiled by comparing
different assumptions and regulatory options. The final step involves evaluating the adequacy
of water supply, cost-benefit analysis, compliance with environmental goals, and uncertainty

assessment (Sieber, 2006).

A key foundation of the model is the development of user-defined scenarios. After recording
the current situation ("Current Accounts"), a "Reference Scenario" or "business-as-usual" can
be developed based on different economic, demographic, hydrological and technological
trends. From this point, additional scenarios can be created based on different policies or
development directions, which allow exploration of various future assumptions. These
scenarios are based on different "What if? " questions. What happens if the rate of population
growth or economic development changes? What happens if new sources of pollution emerge?
What is the impact of more efficient irrigation techniques? How does climate change affect the
hydrology of the system? The different scenarios can be displayed side by side and compared

to see how each change affects the water management system (Sieber & Purkey, 2015).



In WEAP, there are five different methods available for modeling processes - such as
evaporation, runoff, infiltration, and irrigation demand - in watershed areas. These methods are
(1) the Rainfall Runoff and (2) Irrigation Demands Only versions of the Simplified Coefficient
Approach, (3) the Soil Moisture Method, (4) the MABIA Method, and (5) the Plant Growth
Model or PGM. The choice of method is influenced by the complexity of the research and the

data available.

In this thesis, the Soil Moisture Method was chosen, which offers an appropriate level of
complexity, is widely used, and has the important feature of allowing snow accumulation
modeling. The method interprets the catchment area as two soil layers. The different variables
and the principle of the method are presented in Figure 1. Precipitation and melted snow reaches
the ground in the form of water, part of which runs off as surface runoff and part of which
infiltrates into the topsoil. In this layer, some of the water continues to flow to the lower soil
layer, while some of it accumulates as groundwater. Finally, the remaining water from the lower

soil layer also collects as groundwater.

Precipitation,

including snowmelt Irrigation ET=PET*(5z1-2z17)/3

J' J' — Surface mnoff = (precip + irrig) * z]Femoeffmsitnes factor

—* Direct runoff (onlv if z1 > 100%5)

Bucket 1

FAN )

Percolation = Root zone cond. * | Interflow = (Root zone cond. * pref flow dir) * z1°
(1 - pref. flow dir) * z1-

Bucket 2 l

Soil waler capacily (mm)

Py
L

—* Base flow = Deep conductivity * z27

Deep waler capacily (mm)

#2 (Vo)

Figure 1 The two-bucket model (Sieber & Purkey, 2015)



2.2. Segne basin

For building the model, the Segne River (also known as Songdalselva, Sogneelva, or Songa)
was selected. It is approximately 55 km long and located in southern Norway. A key
characteristic of this river is that it is unregulated, meaning it maintains its natural flow regime
and conditions, which makes it particularly suitable for hydrological modeling. The availability
of climate data for rivers in southern Norway within the WEAP software also played an
important role in selecting this particular river for the study. In addition, the Norwegian Water
Resources and Energy Directorate (NVE) defined a Hydrological Reference Dataset (HRD),
which lists rivers that are suitable for climate change modeling based on both regulation status
and availability of measured data (B&ke J, Pedersen I, 2024). The Segne River is included in

this list and is therefore considered appropriate for climate change studies.

420|000 430|000 440|000
)N\
6460000 —| — 6460000
6450000 —| — 6450000
— Sggne
0 mB.f. [ am .|
I I I
420000 430000 440000

Figure 2 Catchment area of the river Sogne

Figure 2 shows the location of the river within the territory of Norway. The elevation of the
catchment area is between 0 and 500 meters. The catchment area is 209 km?, and the land use

distribution within the catchment is presented in Table 1.
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Table 1 Distribution of land use

Land use Amount (%)
Forest 80,4
Agriculture 53
Wetland 5,8
Surface water 4,2
Other 43

2.3. Available data, division of time period

During the research, multiple data sources were used, the types and origins of which are
summarized in Table 2. The climate datasets integrated into the WEAP modeling software are
from a database compiled by Princeton University, which includes variables for precipitation,
temperature, relative humidity, wind speed, cloud cover, freezing and melting points, among

others.

In order to achieve the highest possible accuracy, I aimed to conduct the analyses primarily at
a daily resolution. This required the use of high-resolution meteorological data from Norwegian

sources.

The SeNorge platform provided reliable, daily resolved precipitation, temperature and snow
depth data, and the Norsk Klimaservicesenter (NKSS) website provided high-quality daily
precipitation data. The observed streamflow data required for model calibration were obtained
from the NVE Sildre (Norges vassdrags- og energidirektorat) database, which contains

measurements from a local gauging station located on the Segne River.

Table 2 Source and duration of data

Data type Source Period (mm/dd/yyyy) Comment
Princeton 1/1/1948 12/31/2014
Precipitation | SeNorge 1/1/1957 Today
NKSS 1/1/1948 6/30/2024
Princeton 1/1/1948 12/31/2014
Temperature
SeNorge 1/1/1957 Today
Snow depth SeNorge 1/1/1957 Today
Streamflow | NVE-Sildre | 12/14/1973 Today 1992 missing
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Table 2 not only presents the types and sources of the data used but also indicates the time
periods for which each dataset was available. Figure 3 provides an illustrative graphical
representation of these time intervals. The figure shows that the time spans covered by the
various data sources differ; however, the period from 1974 to 2014 is the only one during which
all the necessary data were simultaneously available. Therefore, this time range provided the

most complete and reliable basis for comparative and calibration analyses.

[1/1/1948] [1/1/1957] [12/14/1973| [1/1/1992] [12/31/1992] [12/31/2014] [6/30/1948] [Today]
T - I

Precipitation-Princeton

Precipitation-SeNorge

Precipitation-NKSS

Temperature-Princeton

Temperature-SeNorge

Snow depth-SeNorge

Streamflow-NVE-Sildre

Figure 3 Available time intervals of different datasets

To assess the reliability and predictive capability of the model, I divided the available dataset
for the period between 1974 and 2014 into two parts: the period from 1974 to 1987 was used
for validation, while the period from 1987 to 2014 was used for calibration. This division
follows internationally accepted practice, which recommends allocating approximately one-
third of the full dataset for model validation and the remaining two-thirds for calibration

(Moriasti et al., 2015).

This approach allows an objective assessment of the model's performance over a period of time
unaffected by calibration. It also reduces the risk of "overfitting", i.e. the possibility that the
model may become overly tailored to the calibration data and perform poorly during other
periods. The methodological principle is supported by several studies and recommendations,
emphasizing that the spatial and temporal separation of calibration and validation is a
fundamental requirement for the correct application of hydrological models (Refsgaard &

Knudsen, 1996).
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2.4. Examined statistical variables

Like all hydrological models, the WEAP model needs to be calibrated. The model's adequacy
is assessed by comparing simulated values with observed data. Several statistical variables can
be used for this comparison; in my research, | applied the NSE (Nash-Sutcliffe Efficiency) and
PBIAS (Percent Bias) parameters.

The NSE evaluates how well the simulated values match the observed ones. It indicates how
well the graph of observed and simulated data fit the 1:1 line. The NSE is calculated with
equation 1:

()

anl(yiobs_yisim)z l

Z:?=1(YiObs_Ymean)z

NSE =1 — [
where Y:°® is the i-th measured value, Yi#™ is the i-th simulated value, Y™ is the average of

the observed data, and n is the total number of observations.

Its value ranges between -0 and 1, where 1 is the optimal value. A value between 0 and 1 is
considered acceptable, while a value below 0 means that estimating by the mean would give a
more accurate value (Nash & Sutcliffe, 1970). The categories shown in Table 3 are the

guidelines for the evaluation (Moriasi et al., 2015).

The PBIAS (percent bias) expresses the extent to which the model overestimates or
underestimates a given variable compared to observations (Gupta et al., 1999). The optimal
value of PBIAS is 0; positive values indicate underestimation by the model, while negative
values reflect overestimation. The interpretation is also guided by the categories shown in Table

3 (Moriasi et al., 2015). The PBIAS value is calculated with equation 2:

(2)

pBIAS = | Bl 100
. (rP)

where Y;° is the i-th measured value, Y;*™ is the i-th simulated value, and n is the total number

of observations.
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Table 3 Categories of model evaluation

Performance NSE PBIAS (%)
Rating
Very good 0,80 < NSE PBIAS <5
Good 0,70<NSE<0,80 | +5<PBIAS <+10
Satisfactory | 0,50 <NSE < 0,70 | £10 <PBIAS <=£15
Unsatisfactory NSE <0,50 PBIAS > +15

Therefore, the model is considered satisfactory if the conditions NSE > 0.50 and PBIAS >
+25 are met (Moriasi et al., 2015).

2.5. Workflow

Princeton ‘ | SeNorge + NKSS + Sildre observed

Data sources and initial
analyses

§

Initial model evaluation
and data correction _

SeNorge data
instead of
Princeton data

Calibration
1987-2014

Validation
1974-1986

!
!
!

Future climate scenario
assessment

Figure 4 Workflow method of the WEAP model calibration, validation, and future climate
scenario assessment
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Data sources and initial analyses

As the first step of the modeling process, the climate data integrated into the WEAP software
was examined, which originates from Princeton University's database. While these data sets are
widely applicable on a global scale, their reliability for use in Norway had not been previously
validated. The available dataset covers the period from 1973 to 2014 and includes variables

such as precipitation, temperature, humidity, wind speed, and snow depth.
To assess the reliability of these data, I compared the Princeton dataset with:
e Observed streamflow values from the Sildre database,

o Precipitation, temperature, and snow depth measurements from local stations on the

SeNorge platform,
o Precipitation data provided by the Norsk Klima Service Senter.

Initial model evaluation and data correction

The initial simulation results, based on Princeton input data, were compared with the observed
streamflow. To evaluate the model's performance, two statistical indicators were applied: the
Nash—Sutcliffe Efficiency (NSE), and the Percent Bias (PBIAS). These indicators were
calculated both for the entire modeling period and seasonally, with separate assessments for the

summer and winter periods.

The initial results indicated that the calculated statistical indicators deviated significantly from
the generally accepted reference values. As a result, the Princeton dataset was replaced with
precipitation and temperature data from the SeNorge database, which was deemed more
reliable. Simulations and performance evaluations were then repeated using the updated inputs.
Although the recalculated indicators showed notable improvement further model calibration

was needed.

Calibration and validation of the model

Model calibration was conducted in multiple stages: first over the full modeling period, and
then separately for the summer and winter seasons. The available data covered the period 1974-
2014. The calibration was performed for two thirds of the total period (1987-2014), while the

remaining one third (1974-1987) was used for model validation.
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The calibrated model produced satisfactory results. During the validation phase the
performance of the model was examined to ensure the applicability and stability of the model

to unknown periods.

Future climate scenario assessment

As the final step in the analysis, future climate scenarios were evaluated based on outputs from
various global climate models (GCMs). Their potential impacts on streamflow data were
assessed, with particular attention given to low-flow frequency and magnitude, as well as
changes in annual average discharge. Based on these results, conclusions were drawn regarding

the expected evolution of future hydrological conditions.

2.6. Future climate scenarios

Considering climate change has become a fundamental requirement in both water management
and ecosystem protection. Forecasting future streamflow is essential for planning hydropower
utilization, modeling ecological processes influenced by low flows (such as fish population

survival), and conducting flood risk forecasting and risk analysis.
Shared Socioeconomic Pathways (SSPs)

In assessing future climate scenarios, understanding and applying the Shared Socioeconomic
Pathways (SSPs) is essential. The SSPs describe possible future developments in society and
economy, which serve as the foundation for simulating future greenhouse gas emissions and
climate impacts in climate models. Developed under the CMIP6 project, these scenarios are
widely used for climate impact assessments, as well as for evaluating adaptation and mitigation

strategies (O’Neill et al., 2016).

The SSPs combine different societal and economic scenarios with various climate policy
pathways, quantifying changes in resource use, energy consumption, technological

development, population growth, and environmental awareness.

In this study three SSP scenarios were applied, representing different levels of future climate

change:

e SSP1-2.6 — A sustainable development pathway characterized by low population
growth, environmentally friendly technologies, and strong international cooperation.

This is one of the most optimistic scenarios, aiming to limit global warming below 2°C.
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e SSP2-4.5 — A middle path scenario, assuming continuation of current trends. It reflects
moderate social and economic change and moderate emission reductions, resulting in a

mid-range level of climate change.

e SSP5-8.5 — A pessimistic scenario based on rapid economic growth and heavy reliance
on fossil fuels. This leads to the highest levels of greenhouse gas emissions and

potentially substantial global warming (up to 4-5°C).

Applying these scenarios enables the evaluation of potential future climatic conditions under
varying socioeconomic and emission trajectories, with particular focus on their effects on

streamflow.
Applied climate models

In this thesis, the objective was to model future streamflow under different climate scenarios
using a hydrological model that was calibrated and validated for a Norwegian catchment. For
this purpose, three global climate models available within the WEAP system were selected:

NorESM2-LM, MPI-ESM1-2-HR, and HadGEM3-GC31-MM.

The NorESM2-LM (Norwegian Earth System Model, version 2, Low Resolution) is a climate
model developed by the Bjerknes Centre for Climate Research and the Norwegian
Meteorological Institute. It has been specifically optimized for high-latitude, Arctic, and
Scandinavian conditions. A comprehensive description of the model is provided by Seland et
al. (2020), highlighting its capabilities in simulating temperature, precipitation, and sea ice
patterns. Due to its region-specific development and strong performance in Scandinavia, this

model was considered a natural choice for studying a Norwegian river.

The MPI-ESM1-2-HR is a high-resolution global climate model developed by the Max Planck
Institute for Meteorology. It has been applied and validated within the CMIP6 (Coupled Model
Intercomparison Project Phase 6) and HighResMIP (High Resolution Model Intercomparison
Project) frameworks. Miiller et al. (2018) and Gutjahr et al. (2019) emphasize its excellent
performance in simulating temperature and precipitation, particularly across Europe and the
Scandinavian region. Its high spatial resolution makes it well-suited for regional impact

assessments.

The HadGEM3-GC31-MM is part of the third generation of global climate models developed
by the UK Met Office Hadley Centre. As described by Andrews et al. (2020), the model was

developed under the CMIP6 project and is widely used in European climate scenario analyses,
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including Scandinavia. Thanks to its medium spatial resolution and advanced atmospheric

parametrization, it is well-suited for supporting regional hydrological studies.
Methodology for Climate Scenario Analysis

To analyze future streamflow changes, daily data were used from the three global climate
models (NorESM2-LM, MPI-ESM1-2-HR, HadGEM3-GC31-MM) integrated into the WEAP
system. These datasets were available from 2015 to 2100 and were generated according to the

different SSP emission scenarios described above.

For evaluation, the 30-year future period of 2060-2090 was selected. This timeframe aligns
with the IPCC’s recommendations for climate trend analysis, as longer periods help smooth out
natural climate variability, reducing the influence of short-term fluctuations (IPCC, 2021). As
a result, the observed changes more accurately reflect long-term climate trends rather than year-

to-year variability.

The simulated future streamflow was compared with the past reference period of 1980-2010
simulated by the model. It is important to note that historical reference data were not based on
observed measurements, but on the model’s historical simulations. This approach avoids
inconsistencies that could arise from combining observed and modeled datasets, which may
have structural differences. By comparing both periods within the model’s own framework, the
analysis maintains internal consistency, which is crucial for reliable estimation of relative

changes.
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3. Results and evaluation

3.1. Data sources and initial analyses

The WEAP software provides access to a built-in climate database created by the Terrestrial
Hydrology Group at Princeton University. The database contains climate data for the period
between 1948 and 2014. Although this data source is widely used in various hydrological and
climate modelling studies, it has not been proven that the data can be used with sufficient
accuracy in a Norwegian context. Accordingly, validation of the database was considered

essential as an initial step in this research.

The data validation was carried out by comparing data from the Princeton University database
with data from local Norwegian monitoring stations. As a reference, the SeNorge database was
used, which contains precipitation, temperature and snow depth data. The Norsk Klima Service
Senter database was also used, which provides local precipitation data. The comparisons have
been carried out using Microsoft Excel, applying different visualization techniques such as

graphs, pivot tables and histograms.

3.1.1. Precipitation data comparison
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Figure 5 SeNorge and Princeton precipitation data in 2005
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Figure 6 SeNorge and NKSS precipitation data in 2005

Figures 5 and 6 illustrate the precipitation data for a randomly selected year. The SeNorge and
Norsk Klima Service Senter measurements show a close correlation: the precipitation
maximums occur at the same time, and although there are small differences in intensity, the

overall trend of the data is the same.

In contrast, precipitation data from the Princeton database show significant deviations from
SeNorge values. The timing and intensity of precipitation peaks do not align clearly, raising

concerns about the applicability of the data for hydrological modeling in Norway.
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Figure 9 NKSS precipitation data distribution 2005-2009

The histograms (Figure 7-8-9) were created by dividing the data into five-year intervals. The
results show that the data from SeNorge and Norsk Klima Service Senter follow a similar
distribution, which confirms the consistency of the two data sources. In contrast, the Princeton

database shows a significantly different trend.

The precipitation distribution of Princeton data shows a steadier decline, which may indicate

that the dataset is smoother or less sensitive to local precipitation intensities. Lower

21



precipitation values are less frequent in the Princeton database, while the local station data tend

to follow the more extreme weather patterns of the northern areas.
Table 4 Annual precipitation totals

Sum / Princeton Sum/ SeNorge Sum / NKSS

Year (mm/year) (mm/year) (mm/year)

1975 1388.93 1781.60 1565.00
1980 1198.59 1656.50 1284.30
1985 1336.66 1769.10 1474.80
1990 1969.22 2493.00 2250.90
1995 1393.67 1679.00 1456.20
2000 1730.66 2830.10 2589.10
2005 1392.37 1653.10 1439.80
2010 1158.81 1377.10 1235.40
2014 1767.85 2527.50 2495.30

In Table 4 the summarized values represent sums for every year, and in the table every fifth
year is presented. A tabular comparison of annual precipitation totals confirms that the SeNorge
and Norsk Klima Service Senter data show a strong correlation, while the Princeton database
systematically records lower annual precipitation totals. This suggests that the Princeton
database may underestimate precipitation levels in Norway, potentially distorting hydrological

modeling results.

3.1.2. Temperature data comparison
In addition to precipitation data, temperature data were also compared. In this case, data were

only available from the Princeton and SeNorge databases.
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Figure 10 SeNorge and Princeton temperature data in 2007
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Figure 10 illustrates the annual temperature variation for a selected year. The trend in the
Princeton database follows the seasonal variations well, but there are minor differences,
especially in extreme weather conditions. The SeNorge data, on the other hand, seems to be
more accurate, as they show larger fluctuations, probably due to the denser network of local

meteorological stations and more detailed measurement methods.
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Figure 11 Princeton temperature data distribution 2005-2009
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Figure 12 SeNorge temperature data distribution 2005-2009

The data were also compared on histograms (Figure 11-12), breaking the time into periods
similar to the precipitation. On these graphs, it can be observed that the Princeton data show a
more balanced distribution, with the SeNorge data showing a higher peak concentration. In the
Princeton data series, extreme low and high values are less frequent, whereas SeNorge has more

data in the higher temperature ranges. So, although the two datasets show similar patterns, the
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Princeton data are less extreme. This may suggest that the Princeton model returns smoother

values, while SeNorge tracks local variations better.

Table 5 10-year precipitation averages

Year Average / Average / Average / Dif-
SeNorge (°C) Princeton (°C) ference (°C)
1973-1983 6.751 6.073 0.677
1984-1993 7.082 6.409 0.672
1994-2003 7.541 6.729 0.812
2004-2014 7.801 7.227 0.574

Based on the 10-year average temperatures (Table 5), the Princeton data showed lower averages
than the SeNorge database values in all years. This confirms the assumption that the Princeton
model is susceptible to simulating climatic extremes, which can lead to inaccuracies in

hydrological modelling at a local scale.

3.1.3. Snow depth comparison

Snow depth data were available from both the Princeton and SeNorge databases.
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Figure 13 SeNorge and Princeton snow depth data in 2000

Figure 13 shows the daily average snow depth for a randomly selected year. It can be observed
that the snow depth data from the SeNorge database decreased faster, meaning that snow melts
faster than in the Princeton dataset. This suggests that the temperature model of the Princeton

database may differ from the real local conditions.

24



3.1.4. Conclusion of the evaluation of climate data

Analysis of the data shows that the Princeton database does not provide sufficiently accurate
climate data for Norway. Based on comparisons of precipitation and temperature, the SeNorge

database was found to be more reliable as it better reflects local measurements.

Therefore, in the modelling analyses, I replaced the Princeton database precipitation and
temperature data with the SeNorge data, as they provide higher accuracy and local relevance

for the analysis of Norwegian rivers.
3.2. Calibration of the model for the whole period

3.2.1. Calibration of Kc

The first step of the calibration was to adjust the Kc (crop coefficient) parameter. Accurate
determination of crop water use is key in hydrological modelling, especially when estimating
evapotranspiration. The crop coefficient (Kc) is a dimensionless multiplier that indicates how
much water a specific crop or vegetation type transpires relative to the reference
evapotranspiration (ETo) (Pereira, 1998). The actual evapotranspiration (ETc) is calculated

using equation 3:
ET, =K. ET, (3)

The value of Kc changes according to the different growth stages of the vegetation, so the model
needs to be capable of capturing these temporal variations. In the WEAP model, the purpose of
calibrating Kc is to ensure that the simulated water use of vegetation reflects reality as closely
as possible. This is important because it directly affects soil moisture, infiltration processes,
surface runoff, and ultimately the accuracy of streamflow simulations (Figure 1). Well-chosen
and properly calibrated Kc values are therefore essential for ensuring the reliability of the

model's results.

The default value of Kc is 1, which means that the reference evapotranspiration is equal to the
actual evapotranspiration. The calibration of the Kc value in this research was performed using
the automatic calibration algorithm PEST (Parameter ESTimation) built into the WEAP model.
PEST is an iterative optimization tool capable of fine-tuning the model input parameters in a
way that minimizes the difference between simulated and measured data (Doherty, 2015).
Figure 14 shows the layout of PEST in the WEAP software. Following this initial use, PEST
was not applied further, as it mainly supported the visual understanding of parameter sensitivity,

but did not define specific optimal parameter values.
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Table 6 Calibration of Kc for the whole period

Ke

Ke (-) PBIAS (%) | NSE (-)

2 -15.283 0.398
2,3 -10.535 0.396
2,4 -9.047 0.395
2,5 -7.604 0.393
2,6 -6.203 0.392
2.7 -4.844 0.390
2.8 -3.525 0.388
2.9 -2.243 0.386
3 -0.999 0.384
3.1 0.210 0.381
3.2 1.385 0.379
4 9.711 0.359

+ + 1 2H x5 [E oe seen

Table 6 presents the calibration results of the Kc value, based on the performance indicators
PBIAS and NSE. According to the table, the PBIAS value is closest to zero at K¢ = 3.1, while
the NSE also remains within the range generally considered acceptable. The Kc value of 3.1
was kept constant throughout the calibration of all other parameters. This decision was made to
maintain a consistent methodological approach across the entire calibration and evaluation

process.
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3.2.2. Calibration of other parameters

After calibrating the Kc value, further calibration calculations were deemed necessary based on
the PBIAS and NSE indicators. In these cases, Kc = 3.1 was used, as it provided the most
balanced results according to previous analyses. The calibration focused on the following
hydrological parameters: Root Zone Conductivity (RZC), Soil Water Capacity (SWC), Deep
Conductivity (DC), Deep Water Capacity (DWC), Runoff Resistance Factor (RRF), and
Preferred Flow Direction (PFD). These parameters were selected because they have a direct
impact on the soil moisture distribution, the dynamics of deep infiltration and the water balance
processes simulated by the model. Proper calibration of these variables is essential for

improving the model’s overall performance.

Table 7 summarizes the default values of the parameters examined during the calibration
process. As a starting point, the calibration typically considered half and double the default
values, followed by a more detailed analysis using finer intervals. In each case, the most optimal

value—based on performance indicators—was highlighted in green.

Table 7 Default value of parameters

Parameter Default
Root Zone Conductivity (RZC) 20 mm/day
Soil Water Capacity (SWC) 1000 mm
Deep Conductivity (DC) 20 mm/day
Deep Water Capacity (DWC) 1000 mm
Runoff Resistance Factor (RRF) 2
Preferred Flow Direction (PFD) 0,15

Calibration of Root Zone Conductivity

The value of Root Zone Conductivity (RZC) refers to the conductivity of the root zone (top
"bucket") under conditions of full saturation, i.e., when relative storage Z1 = 1.0. At this
saturation level, water flow divides in two directions: lateral movement within the upper soil
layers (interflow), and downward movement toward the deeper soil layers. Different soil types
result in varying RZC values. According to Table 8, the statistical performance indicators

showed the most optimal results at RZC = 15 mm/day.
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Table 8 Calibration of Root Zone Conductivity (RZC) for the whole period

RZC+Kc=3,1
RZC (mm/day) |PBIAS (%) |NSE(-)

10 10.752 0.398
15 4.719 0.393
19 1.022 0.384
20 (default) 0.210 0.381
21 -0.565 0.379
25 -3.345 0.369
40 -10.791 0.336

Calibration of Soil Water Capacity

Soil Water Capacity (SWC) represents the water-holding capacity of the upper soil layer (top
"bucket") and is expressed in millimeters (mm). The value of SWC typically ranges between 0
and 1000 mm. According to Table 9, the statistical indicators showed the most optimal

performance at SWC = 500 mm.

Table 9 Calibration of Soil Water Capacity (SWC) for the whole period

SWC+Kc=3,1
SWC(mm) |PBIAS (%) |NSE(-)
200 -10.144 0.555
500 -5.098 0.472
900 -0.739 0.396
950 -0.258 0.388
975 -0.022 0.385
980 0.024 0.384
1000 (default) 0.210 0.381
2000 6.922 0.299

Calibration of Deep Conductivity

Deep Conductivity (DC) represents the conductivity of the deeper soil layer (bottom “bucket”)
at a relative storage of Z2 = 1.0, meaning full saturation. This parameter controls the amount of
baseflow generated in the model. In WEAP, the DC value is defined as a single, consistent
parameter across the entire catchment area, regardless of soil classification or spatial
heterogeneity. Increasing the DC value results in higher baseflow. It is important to note that if
backflow occurs towards a groundwater node in the study area, the DC parameter is not taken

into account in the model.
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Table 10 presents the PBIAS and NSE statistical indicators for various DC values, with the
fixed value Kc = 3.1. According to the analysis, a DC value of 1000 mm/day was found to be
optimal and still hydrologically realistic. Higher values, such as DC = 5000 mm/day, do not
reflect realistic soil physical properties; although they may lead to slight improvements in the
NSE indicator, they do not yield a significant enhancement in overall model performance, as

illustrated in Figure 15.

Table 10 Calibration of Deep Conductivity (DC) for the whole period

DC+Kc=3,1
DC (mm/day) | PBIAS (%) | NSE (-)
10 0.268 0.386
20 (default) 0.210 0.381
40 0.189 0.380
100 0.178 0.386
200 0.179 0.394
500 0.195 0.407
1000 0.202 0.416
2000 0.206 0.425
5000 0.210 0.436
0.280 0.440
0.260 0.430
0240 0.420
S5 0.410 T
2 0.220 %
< —e 0.400 Z
& 0.200 0.390
0.180 0.380
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Figure 15 Variation of PBIAS and NSE according to DC
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Calibration of Deep Water Capacity

Deep Water Capacity (DWC) represents the actual water holding capacity of the deeper soil
layers (bottom “bucket”), expressed in millimeters (mm). This value is given as a single
parameter for the catchment area and does not vary according to soil type. In cases where
backflow occurs toward a groundwater node within the study area, the DWC parameter can be
disregarded. Based on Table 11, DWC = 10 mm produced the most optimal results according

to the statistical indicators.

Table 11 Calibration of Deep Water Capacity (DWC) for the whole period

DWC+Kc=3,1
DWC (mm) |PBIAS (%) |NSE(-)

10 0.209 0.468
50 0.204 0.442
100 0.199 0.425
250 0.183 0.400
500 0.179 0.384
750 0.192 0.380
1000 (default) 0.210 0.381
2000 0.319 0.392

Calibration of the Runoff Resistance Factor

Runoff Resistance Factor (RRF) is defined as the control surface runoff response, influenced
by various environmental factors such as catchment area index and land slope. The RRF

typically ranges between 0 and 1000, with a default value of 2.

Since RRF can vary depending on land use categories, its proper calibration is essential for
accurate simulation results. Sensitivity analyses were conducted during calibration to determine
the statistical performance indicators corresponding to different RRF values, as summarized in
Table 12. Although the value of RRF = 1.5 appeared theoretically optimal, the simulations
indicated that RRF = 2 (the default value) yielded the most favorable results in terms of both
PBIAS and NSE. It is also important to note that the model showed high sensitivity to changes
in the RRF value.
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Table 12 Calibration of Runoff Resistance Factor (RRF) for the whole period

RRF+Kc=3,1
RRF (-) PBIAS (%) NSE (-)
1 -7.093 0.439
1,5 -2.432 0.433
2 (default) 0.210 0.381
4 4.040 0.200

Calibration of Preferred Flow Direction

The Preferred Flow Direction (PFD) parameter controls the direction of water movement in the
root zone layer (top "bucket"). It can range from 0 to 1, where a value of 1.0 indicates that 100%
of the water moves laterally (interflow), while a value of 0 implies that 100% of the water
moves vertically downward into the lower soil layer (bottom "bucket") or directly into the
groundwater. The PFD value may vary depending on the soil class. The default value in the

model is 0.15.

The results of calibration simulations performed for different PFD values are summarized in
Table 13. The performance indicators were most favorable at PFD = 0.9, suggesting that lateral

water movement is dominant in the study area.

Table 13 Calibration of Preferred Flow Direction (PFD) for the whole period

PFD+Kc=3,1
PFD (-) PBIAS (%) | NSE(-)

0,1 0.208 0.373
0,15 (default) 0.210 0.381
0,3 0.215 0.405
0,4 0.218 0.420
0,5 0.219 0.433
0,7 0.214 0.456
0,9 0.168 0.470
1 -0.024 0.472

3.2.3. Optimal parameter values

In the previous chapters, a full model run was carried out using the best-performing parameters
highlighted in green, in order to evaluate the success of the calibration and the overall

performance of the model. The selected, calibrated parameters are summarized in Table 14.
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The value of Kc differs from the previously indicated optimal choice highlighted in green:
rather than the originally applied Kc = 3.1, a value of 2.7 was used in this final simulation. This
adjustment was made because, when the model was run with the complete parameter set, Kc =
2.7 yielded the most favorable performance metrics. Compared to earlier simulations, this

change was therefore intended to further improve the model’s overall accuracy.

Table 14 Optimal values

Parameter Calibrated value Unit
Kc 2,7 -
Root Zone Conductivity (RZC) 15 mm/day
Soil Water Capacity (SWC) 500 mm
Deep Conductivity (DC) 1000 mm/day
Deep Water Capacity (DWC) 10 mm
Runoff Resistance Factor (RRF) 2 -
Preferred Flow Direction (PFD) 0,9 -

The simulations resulted in PBIAS = -5.998% and NSE = 0.552, which fall within the
"satisfactory" model performance range according to the categorization scheme proposed by
(Moriasi et al., 2015). Although the results obtained can be considered satisfactory, the question
arises whether further fine-tuning could lead to additional improvements in the model's

performance.

3.2.4. Calibration of melting and freezing point

Since the model was not originally developed for Scandinavian climatic conditions, a detailed
examination of snow-related hydrological processes—particularly snow accumulation and
snowmelt—was deemed necessary. To this end, some critical parameters related to climatic
factors, such as melting point (MP) and freezing point (FP), were calibrated. The preliminary
expectation before the calibration was that adjusting these factors would improve the model

performance.
Melting Point calibration

In the model, the melting point (MP) defines the temperature threshold above which snowmelt
begins. The default value is +5 °C; however, the parameter can be adjusted within a range of -

50 °C to +50 °C. During the calibration process, PBIAS and NSE performance indicators were
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evaluated across a range of temperature values. Based on the results (see Table 15), a melting
point of 4 °C yielded the best model fit, characterized by low PBIAS and high NSE values.

Therefore, this value is considered optimal under the given climatic conditions.

Table 15 Calibration of Melting Point (MP) for the whole period

MP+Kc=3,1
MP (°C) PBIAS (%) NSE (-)
10 1.944 0.288
5 (default) 0.210 0.381
4 -0.076 0.385
3 -0.289 0.381
2 -0.459 0.376
0 -0.659 0.364
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Figure 16 Relative streamflow as a function of Melting Point during the Jan—Feb 2008 Period
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Figure 17 Streamflow as a function of Melting Point during the Jan—Feb 2008 Period

Figures 16 and 17 illustrate snowmelt events during a randomly selected year — specifically, the
winter of 2008 — under various melting point (MP) settings. Figure 15 demonstrates the impact
of different MP values on relative discharge, while Figure 16 compares the simulated discharge

for each setting with the observed discharge (Obs) data.

According to the figures, variations in MP have only a moderate influence on model output.
The curves generated under different settings follow very similar trends, with only minor
differences observed in the magnitude and timing of peak flows. This suggests that calibrating
the melting point does not lead to drastic changes in runoff dynamics; however, based on the

NSE and PBIAS indicators, it can still yield modest improvements in model fit.
Freezing Point calibration

In the model, the freezing point (FP) represents the temperature threshold below which
precipitation accumulates in solid form (as snow). The default value is -5 °C, and the parameter
can be adjusted within the same range as the MP parameter. According to the calibration results
(see Table 16), a value of -5°C provided the best model performance, indicating that no

adjustment of the default setting is necessary.
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Table 16 Calibration of Freezing Point (FP) for the whole period

FP+Kc=3,1
FP (°C) PBIAS (%) | NSE ()
-10 -0.306 0.376
-7 -0.058 0.379
-6 0.063 0.380
-5 (default) 0.210 0.381
-4 0.390 0.381
-3 0.608 0.379
0 1.688 0.367
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Figure 18 Relative streamflow as a function of Freezing Point during the Jan—Feb 2008
Period
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Figure 19 Streamflow as a function of Freezing Point during the Jan—Feb 2008 Period

Figures 18 and 19 present a snowmelt event during a randomly selected year — specifically, the
winter of 2008 — demonstrating the effects of varying the freezing point (FP). The figures

indicate that changes in the freezing point have a negligible impact on model performance.
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Optimal parameter values

To assess overall model performance, the calibrated melting and freezing points were

incorporated into the simulation alongside the previously identified best-performing

hydrological parameters. The applied parameter values are summarized in Table 17.

Table 17 Final optimal values for the whole period

Parameter Calibrated values Unit
Kc 2,7 -
Root Zone Conductivity (RZC) 15 mm/day
Soil Water Capacity (SWC) 500 mm
Deep Conductivity (DC) 1000 mm/day
Deep Water Capacity (DWC) 10 mm
Runoff Resistance Factor (RRF) 2 -
Preferred Flow Direction (PFD) 0,9 -
Melting Point (MP) 4 °C
Freezing Point (FP) -5 °C

The results of the updated simulation are PBIAS = -6.209%, NSE = 0.553. These results

represent a slight improvement over the previous simulation, particularly in terms of the NSE

indicator, which reflects an enhanced predictive capacity of the model. Thus, the calibrated

melting and freezing point therefore contribute slightly to fine-tuning the model, especially in

cold, snow-covered regions.
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Figure 20 Annual average streamflow using parameters calibrated for the whole period
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Figure 21 Changes in measured and simulated streamflow in 2004 using parameters

calibrated for the whole period

Figures 20 and 21 compare the simulated ("Runoff") and observed ("Gauge") streamflow. The
graphs are taken directly from the WEAP software. Figure 20 illustrates the annual average
streamflow trends over the period 1986—-2014, while Figure 21 presents the daily streamflow

time series for a randomly selected year (2004).

Based on Figure 20, it can be concluded that there is generally good agreement between the
simulated and observed streamflow. The figure also shows that no observed data was available

for the year 1992. Overall, the model is capable of reproducing the interannual variability of
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streamflow, effectively capturing fluctuations driven by precipitation and other hydrological

factors.

Figure 21 offers a more detailed view of model performance at a daily resolution. For the year
2004, the simulated and observed data show a strong correlation, especially during periods of
low and moderate flow. The model adequately represents key features of runoff dynamics,
including the system’s response to precipitation events and subsequent recession phases. The
largest deviations occur during peak flow events. In these cases, observed values are generally
higher than simulated ones, suggesting that the model may underestimate runoff associated with

extreme precipitation events.

3.3. Seasonal calibration of the model for summer and winter periods

Although the calibration of the model for the whole period has already shown satisfactory
results, the question arises whether the performance of the model can be further improved by
calibrating the model separately for summer and winter, taking seasonal variability into
account. In this approach, snow-related processes such as snow accumulation and snowmelt
could be isolated or excluded from individual simulation periods, thereby potentially improving

overall model performance. The following section explores this possibility.
For the study, the one-year period was divided into two segments:

e Winter period: November 1 — April 30
e Summer period: May 1 — October 31

Characteristics of the winter period

During winter, temperatures drop significantly, promoting snow accumulation and surface ice
formation. Most precipitation falls in solid form (as snow), which is temporarily stored in the
catchment area and does not immediately appear in the streamflow. Consequently, discharge
levels are generally low, while the spring snowmelt can cause sudden and significant runoff

events, potentially resulting in flood peaks.

Characteristics of the summer period

The summer period is characterized by rising temperatures and variable precipitation patterns.
In May and June, high discharge may result from the significant water excess generated by

snowmelt. In mid-summer, decreasing precipitation and increased evaporation often lead to
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lower water levels. In September and October, frequent rainfall typically causes streamflow to

rise again.

Given the contrasting hydrological characteristics of these two periods, separate calibration is
justified. This approach enables a more accurate representation of seasonal model sensitivity

and offers the potential to further improve simulation performance.

Calibration Method

In this case, calibration was performed by applying a consistent set of parameter values across
the entire simulation period (a distinct parameter set was used for the summer and winter cali-
brations, respectively). Using the selected parameter set, | ran the simulation over the full pe-
riod. From the resulting streamflow time series, only the months corresponding to the target
season (i.e., either summer or winter) were extracted. The NSE and PBIAS performance indi-

cators were then calculated based solely on this season-specific subset of the data.

3.3.1. Calibration of Kc

To investigate the seasonal sensitivity of the Kc (crop coefficient) parameter, calibration was
performed separately for the summer and winter periods. Model fit was evaluated using the

statistical indicators PBIAS and NSE. The results are summarized in Table 18.

Table 18 Calibration of Kc for summer and winter periods

Kc
Kc (-) PBIAS - Nyar (%) | NSE-Nyar(-) | PBIAS-TéLl (%) | NSE-Tél(-)
1 -58.264 0.331 -22.259 0.356
2 -26.626 0.364 -9.280 0.368
2,3 -19.317 0.359 -5.886 0.367
2,4 -17.064 0.356 -4.803 0.366
2,5 -14.896 0.353 -3.743 0.365
2,6 -12.809 0.350 -2.706 0.365
2,7 -10.800 0.346 -1.691 0.364
2,8 -8.864 0.343 -0.698 0.363
2,9 -7.000 0.339 0.274 0.361
3 -5.203 0.335 1.226 0.360
3,1 -3.471 0.331 2.158 0.359
3,2 -1.800 0.327 3.070 0.357
4 9.655 0.292 9.740 0.343
5 - - 1.093 0.491
6 - - -5.145 0.489
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The values in green represent the best compromise for the model's performance over the period.
However, it can be concluded that seasonal calibration did not result in a significant
improvement for the summer period; in fact, a decline in the NSE value was observed compared

to the calibration performed over the full year (see Table 6 above).

This suggests that seasonal adjustment of the Kc parameter alone can be insufficient to improve
model performance, and that further investigation of parameter combinations or seasonal

calibration of additional variables may be necessary.

3.3.2. Calibration of other parameters

To further improve model performance, a seasonal calibration of key hydrological parameters
was conducted — namely, Root Zone Conductivity (RZC), Soil Water Capacity (SWC), Deep
Conductivity (DC), Deep Water Capacity (DWC), Runoff Resistance Factor (RRF), and
Preferred Flow Direction (PFD) — separately for the summer period (May 1 — October 31) and
the winter period (November 1 — April 30). For the Kc parameter, the original value for the full
simulation period (Kc = 3.1) was retained for both seasons. Although separately determined Kc
values (e.g., 3.2 for summer and 5 for winter) could theoretically provide more seasonally
accurate evapotranspiration estimation, the globally applied value was deemed a suitable
compromise for the study's objectives and to maintain modeling consistency. As such, the
effects of seasonal differences were assessed by adjusting the remaining parameters while

keeping Kc constant.
Calibration of Root Zone Conductivity

The RZC parameter was modified in several steps, and model fit for each value was evaluated
using the PBIAS and NSE indicators, separately for the summer and winter periods. The results

are summarized in Table 19.

Table 19 Calibration of Root Zone Conductivity (RZC) for summer and winter periods

RZC+Kc=3,1
RzC PBIAS - NSE - PBIAS - NSE -
(mm/day) Summer (%) | Summer (-) | Winter (%) | Winter (-)
10 10.561 0.369 10.854 0.364
15 2.294 0.348 6.003 0.367
19 -2.452 0.334 2.861 0.361
20 (default) -3.471 0.331 2.158 0.359
21 -4.435 0.328 1.483 0.356
25 -7.849 0.316 -0.961 0.347
40 -16.819 0.285 -7.600 0.310

41



Based on the results, the optimum value of Root Zone Conductivity is 15 mm/day in both
periods. This value resulted in the lowest bias (PBIAS) and provided relatively balanced model
performance (NSE).

Calibration of Soil Water Capacity

The Soil Water Capacity (SWC) parameter was calibrated to fine tune the hydrological
performance of the model, separately for the summer and winter periods. The SWC value was
varied over a wide range (200-2000 mm) and the model performance for each value was

evaluated using the PBIAS and NSE indicators. The results are shown in Table 20.

Table 20 Calibration of Soil Water Capacity (SWC) for summer and winter periods

SWC+Kc=3,1

PBIAS - NSE - PBIAS - NSE -
SWC (mm) Summer (%) | Summer (-) | Winter (%) | Winter (-)
200 -9.602 0.652 -10.430 0.464
500 -2.955 0.476 -6.233 0.426
900 -2.979 0.351 0.447 0.371
950 -3.212 0.340 1.306 0.365
975 -3.339 0.335 1.733 0.362
980 -3.365 0.334 1.818 0.361
1000 (default) -3.471 0.331 2.158 0.359
2000 -9.405 0.244 15.565 0.272

Based on the calibration results, SWC = 200 mm for the summer period and SWC = 500 mm
for the winter period showed the best balance between PBIAS and NSE.
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Calibration of Deep Conductivity

For the Deep Conductivity (DC) parameter, the calibration covered a broad range from 10 to
5000 mm/day. Model performance across this range was evaluated separately for each season.

The corresponding PBIAS and NSE values are presented in Table 21.

Table 21 Calibration of Deep Conductivity (DC) for summer and winter periods

DC+KC=3,1

PBIAS - NSE - PBIAS - NSE -
DC (mm/day) | Summer (%) | Summer (-) | Winter (%) | Winter (-)
10 -8.979 0.332 5.162 0.365
20 (default) -3.471 0.331 2.158 0.359
30 0.281 0.332 0.150 0.356
40 3.021 0.334 -1.311 0.355
100 11.081 0.346 -5.593 0.357
200 15.667 0.359 -8.019 0.363
400 18.755 0.373 -9.645 0.371
500 19.467 0.377 -10.018 0.374
1000 20.992 0.390 -10.816 0.382
2000 21.781 0.402 -11.225 0.391
5000 22.217 0.416 -11.450 0.401

The results show that DC = 100 mm/day for the summer period and DC = 200 mm/day for the

winter period give the best performance.
Calibration of Deep Water Capacity

Deep Water Capacity values were tested in the range 10-2000 mm. The model fit was evaluated

according to Table 22.

Table 22 Calibration of Deep Water Capacity (DWC) for summer and winter periods

DWC+Kc=3,1

PBIAS - NSE - PBIAS - NSE -
DWC (mm) Summer (%) | Summer (-) | Winter (%) Winter (-)
10 22.322 0.461 -11.496 0.428
50 22.306 0.423 -11.495 0.406
100 21.781 0.402 -11.225 0.391
250 17.913 0.368 -9.202 0.369
500 9.289 0.343 -4.643 0.356
750 1.899 0.333 -0.712 0.355
1000 (default) -3.471 0.331 2.158 0.359
2000 -12.893 0.337 7.313 0.372
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Based on the calibration, DWC = 500 mm for the summer period and DWC = 10 mm for the

winter period give the best performance.
Calibration of Runoff Resistance Factor

The Runoff Resistance Factor (RRF) was varied within the range of 1 to 4. Based on PBIAS
and NSE indicators, an RRF value of 1.5 the summer, and RRF value of 2 for the winter
provided the most balanced model performance. Table 23 presents the statistical performance
metrics associated with different RRF values, using a fixed Kc = 3.1. The results indicate that

the model is highly sensitive to changes in this parameter.

Table 23 Calibration of Runoff Resistance Factor (RRF) for summer and winter periods

RRF+Kc=3,1
PBIAS - NSE - PBIAS - NSE -
RRF (-) Summer (%) | Summer(-) | Winter (%) Winter (-)
1 -14.897 0.482 -2.961 0.368
1,5 -7.038 0.430 0.006 0.388
2 (default) -3.471 0.331 2.158 0.359
4 -1.869 0.088 7.168 0.196

Calibration of Preferred Flow Direction

The Preferred Flow Direction (PFD) parameter was tested over the interval from 0.1 to 1.
According to the calibration results shown in Table 24, for the summer period PFD = 0.5, for

the winter period PFD = 0,7 yielded the most favorable outcomes.

Table 24 Calibration of Preferred Flow Direction (PFD) for summer and winter periods

PFD+Kc=3,1

PBIAS - NSE - PBIAS - NSE -
PFD (-) Summer (%) | Summer (-) | Winter (%) Winter (-)
0,1 -4.404 0.319 2.649 0.351
0,15 (default) -3.471 0.331 2.158 0.359
0,3 -0.444 0.364 0.564 0.379
0,4 1.792 0.385 -0.615 0.391
0,5 4.232 0.405 -1.905 0.403
0,7 9.867 0.439 -4.896 0.421
0,9 16.828 0.463 -8.651 0.430
1 20.794 0.470 -11.043 0.430
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3.3.3. Calibration of Melting and Freezing Points

Snow-related processes, such as snow accumulation and melting, play a critical role in
modelling water balance, especially for seasonal distribution. To enhance model performance,
the Freezing Point (FP) and Melting Point (MP) parameters were calibrated separately for the

summer and winter periods.
Calibration of Freezing Point

The freezing point was examined in the range of -10 °C to 0 °C. Table 25 presents the model

performance metrics for different FP values, with the most optimal values highlighted in green.

Table 25 Calibration of Freezing Point (FP) for summer and winter periods

FP+Kc=3,1

PBIAS - NSE - PBIAS - NSE -
FP (°C) Summer (%) Summer (-) Winter (%) Winter (-)
-10 -1.872 0.332 0.524 0.349
-7 -2.659 0.332 1.319 0.354
-6 -3.027 0.331 1.699 0.357
-5 (default) -3.471 0.331 2.158 0.359
-4 -4.000 0.330 2.714 0.359
-3 -4.641 0.329 3.386 0.356
0 -7.652 0.325 6.632 0.339

Calibration of Melting Point

The melting point was tested over a range of 0 °C to 10 °C. According to Table 26, the value of

0 °C was optimal for the summer period, and 4 °C for the winter period.

Table 26 Calibration of Melting Point (MP) for summer and winter periods

MP+Kc=3,1

PBIAS - NSE - PBIAS - NSE -
MP (°C) Summer (%) Summer (-) Winter (%) Winter (-)
10 -9.450 0.313 7.974 0.215
5 (default) -3.471 0.331 2.158 0.359
4 -2.546 0.332 1.232 0.364
3 -1.792 0.333 0.507 0.357
2 -1.151 0.334 -0.092 0.348
0 -0.367 0.334 -0.813 0.329
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3.3.4. Optimal parameter values

The previously described seasonal calibrations resulted in individually optimized parameter
values for each season. Simulations were conducted using the green-highlighted parameter
combinations to assess hydrological model performance based on PBIAS and NSE indicators.
Two simulation configurations were applied: one that included the melting point (MP) and
freezing point (FP) parameters, and one that excluded them. The final, best-performing
parameter combinations are presented in Table 27 and the final simulation results are shown in

Table 28.

Table 27 Final best ideal values for summer and winter periods

Calibrated value | Calibrated value
Parameter — Summer — Winter Unit
Kc 3,2 5 -
Root Zone Conductivity (RZC) 15 15 mm/day
Soil Water Capacity (SWC) 200 500 mm
Deep Conductivity (DC) 100 200 mm/day
Deep Water Capacity (DWC) 500 10 mm
Runoff Resistance Factor (RRF) 1,5 2 -
Preferred Flow Direction (PFD) 0,5 0,7 -
Melting Point (MP) 0 4 °C
Freezing Point (FP) -10 -5 °C
Table 28 Final simulation results
PBIAS - NSE — PBIAS - NSE —
Summer (%) | Summer (-) Winter (%) Winter (-)
Good -6.664 0.719 1.093 0.491
Good+MP,FP -7.621 0.714 1.684 0.496

Based on the results, it can be concluded that applying the calibrated values for freezing and
melting points decreased model performance during the summer period, while improving it
during the winter. This suggests that temperature-driven snow processes play a more significant
role in winter, whereas in summer, these parameters may have a negligible or even disruptive

effect on the model.

Although the statistical indicators for the winter period worsened compared to the values
obtained for the full period, they still fall within the “satisfactory” model performance category
defined by (Moriasi et al., 2015). In contrast, the indicators for the summer period show

significant improvement.
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Figure 22 Changes in measured and simulated streamflow in 2004 using parameters

calibrated for the summer period
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Figure 23 Changes in measured and simulated streamflow in 2004 using parameters

calibrated for the winter periods

Figures 22 and 23 present the simulated and observed streamflow for a randomly selected year.
The graphs are taken directly from the WEAP software. Figure 22 shows the results of the
model calibrated for the summer period, while Figure 23 displays the results from the winter-

calibrated model.

In Figure 22, it is evident that the model captures the smaller and medium-scale flow

fluctuations relatively well; however, it occasionally underestimates the larger flood peaks. In
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some cases, the model's response time is faster than observed, meaning that the simulation
begins rising earlier than the actual event. Overall, the model provides reliable results, and the

summer calibration generally shows good agreement.

Figure 23 demonstrates that the model is unable to accurately reproduce the larger flood peaks.
The simulated values consistently underestimate the observed peak discharges and exhibit a
smoother hydrograph shape. While the model still performs well during low-flow periods, it
responds less sensitively to rapid changes caused by precipitation events. It can be concluded
that the model calibrated for winter conditions fail to reliably simulate the larger flood events,
suggesting that winter precipitation (rain, snow, and meltwater) is still not adequately

represented in the model’s parameterization.

3.3.5. Equifinality - GLUE

Throughout the calibration process, it is essential to consider the principle of equifinality, which
represents a major source of uncertainty in hydrological modeling (K. Beven, 2006).
Equifinality describes the phenomenon where a given model can produce similarly good fits to
observations with different parameter sets — implying that there is not necessarily a single "best"

set of parameters.

A widely used method for quantifying model uncertainty and addressing equifinality is the
Generalised Likelihood Uncertainty Estimation (GLUE) approach, introduced by K. J. Beven
& Binley (1992). Instead of searching for a single optimal parameter set, GLUE accepts
multiple parameter combinations that sufficiently match the observations. It assigns likelihood
values to these combinations based on model performance allowing statistical interpretation of

model output uncertainties and the determination of predictive probability ranges.

The GLUE method thus also helps to reveal the structural uncertainty of the model, as not only
the parameters but also different elements of the model setup (e.g. representation of
hydrological processes) can affect the equivalence of the results. In this context, it is important
to acknowledge that a certain level of uncertainty is inevitable in modeling and should be

explicitly addressed as part of the decision-support process.

This emphasizes that, although a reasonably well-fitting parameter combination was identified
during the model calibration, it should not necessarily be considered the optimal solution. In
line with the principle of equifinality, it is possible that other parameter sets could provide

similarly good or even better fits. Therefore, the results of the calibration should be interpreted
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not as a definitive solution, but as one of several plausible outcomes, especially when the model

is intended to support decision-making processes.

3.4. Model validation

Model validation is an essential step in the model development process. In this study, validation
was carried out using the remaining one-third of the available data, covering the period from
1974 to 1986. During the validation, the same calibrated parameter set — originally optimized

for the full calibration period (1987-2014) — was applied without any further modification.

No validation was performed using the parameters calibrated separately for summer and winter
periods, as the model structure did not support the simultaneous application of season-specific
parameters across the entire time series. Since these parameter sets were tailored specifically
for summer or winter months, applying them to the full year (and thus for validation purposes)

would not have yielded realistic or representative results.

The validation produced a PBIAS of —9.84% and a Nash-Sutcliffe Efficiency (NSE) of 0.483.
Although the NSE value falls below the commonly accepted threshold for satisfactory model
performance suggested by (Moriasi et al., 2015), the results can still be considered acceptable,
particularly given that the validation was conducted for a fully independent, earlier time period.
Furthermore, the outcomes align with the general expectation that model performance tends to
be lower during validation than during calibration, since the parameter set is optimized specif-
ically for the calibration period and may not perform equally well in a different period with

different hydrological characteristics.
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3.5. Assessment of future climate scenarios

The three climate models (NorESM2-LM, MPI-ESM1-2-HR, and HadGEM3-GC31-MM)

were run for a 30-year future period between 2060 and 2090, and their outputs were compared

to simulated historical data for the 1980-2010 reference period.
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Figure 24 Monthly average streamflow under different scenarios

Table 29 Future streamflow compared to the reference period

Cc

® HadGEM3-GC31-MM SSP1-2.6 m HadGEM3-GC31-MM SSP5-8.5

the 30 years

Average values of

Change compared to historical

where historical data is

(m3/s) considered as 100% (%)

Historical
simulation 8.338 100
SSP1-2.6 5.631 67.541
NorESM2-LM SSP2-4.5 5.905 70.826
SSP5-8.5 5.728 68.697
SSP1-2.6 5.485 65.789
MPI-ESM1-2-HR SSP2-4.5 5.114 61.335
SSP5-8.5 5.271 63.215
HadGEM3-GC31-MM SSP1-2.6 5.503 65.994
SSP5-8.5 5.408 64.862

Figure 24 illustrates the monthly average streamflow values projected for the future period

(2060-2090), based on different SSP scenarios of three global climate models (NorESM2-LM,
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MPI-ESM1-2-HR, and HadGEM3-GC31-MM), compared to the simulated values of the
reference period (1980-2010).

Compared to the simulated historical data, most future scenarios differ in nearly all months.
The most striking changes occur during the winter and early spring months (January—April),
where streamflow values are generally lower than in the historical reference. This suggests that
snowmelt may occur earlier or that snow accumulation may decrease due to warmer
temperatures. Such changes are particularly relevant for spring flooding risks and reservoir

management.

During the summer months (June—August), all three models and scenarios project low
streamflow values. This supports the widely expected climate trend of more frequent summer

droughts, which could have adverse impacts on ecosystems, water use, and agriculture.

In the autumn and early winter months (October—December), streamflow values mostly remain
lower or similar to those of the reference period. This may indicate that precipitation in the
future will continue to fall mostly in liquid form during these months, yet immediate runoff will

not significantly exceed past levels.

Table 29 shows the ratio of future streamflow values compared to the simulated historical
reference, which is considered as 100%. According to the future climate scenarios, the
calculated streamflow is significantly lower than those of the 1980-2010 reference period.
Based on the different emission scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) applied to the three
examined climate models (NorESM2-LM, MPI-ESM1-2-HR, and HadGEM3-GC31-MM),

average future streamflow values only reach 61-71% of the reference levels.

This implies that, as a result of climate change, streamflow is projected to decrease by
approximately 29-39% during the examined future period (2060-2090), depending on the
specific model—scenario combination. The greatest decrease is indicated by the MPI-ESM1-2-
HR model under the SSP2-4.5 scenario (only 61.3%), while the smallest reduction is found in
the NorESM2-LM model under the same scenario (70.8%).
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Figure 25 Average monthly streamflow values under different scenarios

Figure 25 clearly illustrates how the annual hydrograph evolves under various climate model—
scenario combinations in the future, compared to the results of the historical simulation. The
most striking feature shown in the figure is that all future scenarios indicate a flattening of the

annual streamflow curve.

While the simulated historical data is characterized by a sharp spring peak (in March), this rise
is much more moderate and spread out in the future scenarios. This suggests that snowmelt may
occur earlier or more rapidly, leading to a less concentrated spring runoff peak compared to the

past.

During the summer months (June—August), the models consistently project persistently low
streamflow values, indicating that the summer period may become even drier in the future. It is
also evident that the differences between the lines are smallest during these months, meaning

the models are in strong agreement regarding the future summer water deficit.

In the winter months (November—December), the simulated historical curve is clearly higher,
implying that future scenarios do not indicate a significant increase in water availability by the
end of the year. This holds true even though milder winters may result in more precipitation

falling as rain rather than snow. This suggests that the watershed’s hydrological response at the
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end of the year is unlikely to change substantially compared to current conditions, even if the

rain—snow ratio shifts.
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Figure 26 Average summer and winter minimum flows under different scenarios

Table 30 Average summer and winter minimum flows

Summer Winter
(m3/s) (m3/s)
Historical

simulation 0.508 3.511
SSP1-2.6 0.476 3.183
SSP2-4.5 0.479 3.192
NorESM2-LM SSP5-8.5 0.336 3.021
SSP1-2.6 0.608 2.766
SSP2-4.5 0.463 2.591
MPI-ESM1-2-HR SSP5-8.5 0.423 2.879
SSP1-2.6 0.380 2.646
HadGEM3-GC31-MM | SSP5-8.5 0.280 2.383

Figure 26 and Table 30 present the lowest summer and winter streamflow values projected
under different climate scenarios, compared to the results of the historical simulation. The
lowest streamflow values were calculated by selecting the single lowest daily discharge for each
year during the summer and winter seasons, respectively. These annual minimum values were

then averaged for each climate scenario. As a result, the average minimum summer and winter
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streamflow values for each scenario were obtained, offering a clear representation of future

trends in low-flow periods.

In the summer season, the historically simulated minimum streamflow was 0.508 m?/s.
Compared to this reference value, most future scenarios indicate a decrease. The NorESM2-
LM model shows lower values across all examined scenarios, particularly under the SSP5-8.5
pathway, where the projected minimum flow drops to just 0.336 m3/s. The MPI-ESM1-2-HR
model shows a slight increase under the SSP1-2.6 scenario (0.608 m?3/s), but reductions are
observed in the other scenarios. The HadGEM3-GC31-MM model predicts the lowest summer
flows in both of its examined scenarios (SSP1-2.6 and SSP5-8.5), especially under SSP5-8.5,
where the value declines to 0.280 m?®/s. These results suggest that a significant drop in summer
flows can be expected, particularly under pessimistic emission scenarios. Such reductions can
make summer drought periods more difficult and present serious challenges for water resource

management.

In the winter season, the historically simulated minimum streamflow was 3.511 m?/s. Future
projections also show generally lower values in winter, although the degree of reduction is less
severe than in summer. The NorESM2-LM model projects winter flows around 3 m?/s across
all three scenarios, with the lowest value again occurring under SSP5-8.5 (3.021 m?/s). The
MPI-ESM1-2-HR model shows a more pronounced decline, especially under SSP2-4.5 (2.591
m?/s). The HadGEM3-GC31-MM model also forecasts reduced winter streamflow, 2.646 m*/s
under SSP1-2.6 and as low as 2.383 m?®/s under SSP5-8.5.
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4. Conclusion

4.1. Data sources and initial analyses

In the initial phase of this study, a comparative analysis was conducted between the global
meteorological dataset integrated into the WEAP software — compiled by Princeton University
— and local Norwegian data sources. For reference, data provided by SeNorge and the Norsk

Klimaservicesenter (NKSS) were used.

The results of this comparison indicated that while the Princeton dataset is easily accessible and
globally consistent, it is less reliable at the local level, especially in terms of precipitation
intensity and temperature extremes. Due to greater temporal and spatial averaging, it fails to

accurately reflect the specific climatic characteristics of Norway.

In contrast, the SeNorge data proved to be more accurate, particularly concerning extreme
weather events, which is probably due to the denser network of stations and more detailed and
locally calibrated measurement methods. Furthermore, a strong correlation was observed

between the SeNorge and NKSS datasets, further supporting the reliability of SeNorge data.

An additional comparison was conducted on snow depth datasets. The results showed a more
rapid decrease in snow depth in the SeNorge data, suggesting that snowmelt occurs earlier than
indicated by the Princeton dataset. This implies that the Princeton temperature model may not

accurately reflect local conditions and fails to capture regional thermal dynamics effectively.

Based on these findings, the SeNorge dataset was selected as the primary source of input data
for the hydrological model, as it offers the most reliable representation of Norwegian

precipitation, temperature conditions, and snow-related processes.

4.2. Calibration of the model for the whole period

The model was calibrated for the full calibration period (1987-2014). Based on the simulation
results, model performance is considered satisfactory: PBIAS = —6.209% and NSE (Nash—
Sutcliffe Efficiency) = 0.553. The NSE value exceeds the general acceptability threshold, and
the negative PBIAS indicates a slight underestimation of streamflow during the analyzed
period. The calibrated parameter values used are summarized in Table 17 (“Final optimal values

for the whole period”).
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Overall, the model follows the measured data series more accurately at low and medium flows,
but during periods of high flows, such as those caused by sudden rainfall or snowmelt, the

model tends to underestimate maximum flows.

4.3. Seasonal calibration of the model for summer and winter periods

Based on the seasonal evaluation of the model’s performance, it can be concluded that the
simulation for the summer period yielded significantly better results (NSE = 0.719, PBIAS = —
6.664%), while performance during the winter period remained weaker (NSE = 0.496, PBIAS
=+1.684%) and did not exceed the metrics calculated for the full period.

This can partly be attributed to the fact that the internal hydrological processes in the WEAP
model form a non-linear system, meaning that parameters influence each other and may behave
differently across seasons. In addition, the difference in model performance between summer
and winter months suggests that the model is more sensitive and accurate to the more intense
evaporation and water movement in summer, while it is less accurate for snow-related processes

in winter.

The lower performance in the winter period is also partly due to the reduction in available data
when the time series is divided seasonally, which gives less statistically stable results.
Additionally, for statistics calculated over the full calibration period, errors tend to balance each
other out. In contrast, this compensatory effect is absent in seasonal analyses, which can lead

to a deterioration in statistical indicators.

4.4. Model validation

The model was validated using the remaining part of the time series, independent of the
calibration period, covering the years 1974-1986. The validation yielded the following
statistical results: PBIAS =-9.84%, NSE = 0.483.

The negative PBIAS indicates that the model continued to underestimate streamflow. Although
the NSE value falls slightly below the generally accepted "satisfactory" threshold, it still
indicates moderate model performance, particularly given that the parameter set was not

specifically tuned for this period.

In summary, the results of the validation show that the model can reproduce the streamflow
outside the calibration period in a limited but still applicable way. The predictive ability of the
model therefore cannot be considered fully generalizable, but it is still capable of identifying

basic hydrological patterns and streamflow trends.
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4.5. Assessment of future climate scenarios

Future hydrological conditions were analyzed using three global climate models (NorESM2-
LM, MPI-ESM1-2-HR, HadGEM3-GC31-MM) under various Shared Socioeconomic
Pathways (SSPs). The analyzed period covered 30 years, from 2060 to 2090. For the
simulations, parameter values previously calibrated for the full 1987-2014 period were used to

ensure comparability with the historical reference period (1980-2010).

Simulation results for future streamflow indicate a systematic decrease in annual average
discharge, ranging between 29% and 39% depending on the model and scenario. The most
significant change occurs in the magnitude of spring flood peaks, which previously occurred as
a result of snowmelt. These peaks are expected to become more moderate in the future due to
reduced snow accumulation and earlier melting. Additionally both summer and winter
minimum streamflows are also expected to decrease significantly, especially under high-

emission scenarios such as SSP5-8.5.

Overall, the projected decline in streamflow, particularly during summer, poses a serious
challenge for future water resource management. These findings highlight the need for climate
adaptation measures, including expanded reservoir capacity, improved water use efficiency, and

strategies to address seasonal shifts in water demand.
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